atsamd_hal/sercom/i2c/
async_api.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
use crate::{
    async_hal::interrupts::{Binding, Handler, InterruptSource},
    sercom::{
        i2c::{self, impl_ehal::chunk_operations, AnyConfig, Flags, I2c},
        Sercom,
    },
    typelevel::NoneT,
};
use core::{marker::PhantomData, task::Poll};

use embedded_hal_async::i2c::{ErrorType, I2c as I2cTrait, Operation};

/// Interrupt handler for async I2C operarions
pub struct InterruptHandler<S: Sercom> {
    _private: (),
    _sercom: PhantomData<S>,
}

impl<S: Sercom> crate::typelevel::Sealed for InterruptHandler<S> {}

impl<S: Sercom> Handler<S::Interrupt> for InterruptHandler<S> {
    // TODO the ISR gets called twice on every MB request???
    #[inline]
    unsafe fn on_interrupt() {
        let mut peripherals = unsafe { crate::pac::Peripherals::steal() };
        let i2cm = S::reg_block(&mut peripherals).i2cm();
        let flags_to_check = Flags::all();
        let flags_pending = Flags::from_bits_truncate(i2cm.intflag().read().bits());

        // Disable interrupts, but don't clear the flags. The future will take care of
        // clearing flags and re-enabling interrupts when woken.
        if flags_to_check.intersects(flags_pending) {
            i2cm.intenclr()
                .write(|w| unsafe { w.bits(flags_pending.bits()) });
            S::rx_waker().wake();
        }
    }
}

impl<C, S> I2c<C>
where
    C: AnyConfig<Sercom = S>,
    S: Sercom,
{
    /// Turn an [`I2c`] into an [`I2cFuture`]
    #[inline]
    pub fn into_future<I>(self, _interrupts: I) -> I2cFuture<C>
    where
        I: Binding<S::Interrupt, InterruptHandler<S>>,
    {
        S::Interrupt::unpend();
        unsafe { S::Interrupt::enable() };

        I2cFuture { i2c: self }
    }
}

/// `async` version of [`I2c`].
///
/// Create this struct by calling [`I2c::into_future`](I2c::into_future).
pub struct I2cFuture<C, D = NoneT>
where
    C: AnyConfig,
{
    i2c: I2c<C, D>,
}

impl<C, S, D> I2cFuture<C, D>
where
    C: AnyConfig<Sercom = S>,
    S: Sercom,
{
    async fn wait_flags(&mut self, flags_to_wait: Flags) {
        core::future::poll_fn(|cx| {
            // Scope maybe_pending so we don't forget to re-poll the register later down.
            {
                let maybe_pending = self.i2c.config.as_ref().registers.read_flags();
                if flags_to_wait.intersects(maybe_pending) {
                    return Poll::Ready(());
                }
            }

            self.i2c.disable_interrupts(Flags::all());
            // By convention, I2C uses the sercom's RX waker.
            S::rx_waker().register(cx.waker());
            self.i2c.enable_interrupts(flags_to_wait);
            let maybe_pending = self.i2c.config.as_ref().registers.read_flags();

            if !flags_to_wait.intersects(maybe_pending) {
                Poll::Pending
            } else {
                Poll::Ready(())
            }
        })
        .await;
    }
}

impl<C, S> I2cFuture<C, NoneT>
where
    C: AnyConfig<Sercom = S>,
    S: Sercom,
{
    /// Return the underlying [`I2c`].
    pub fn free(self) -> I2c<C> {
        self.i2c
    }

    /// Use a DMA channel for reads/writes
    #[cfg(feature = "dma")]
    pub fn with_dma_channel<D: crate::dmac::AnyChannel<Status = crate::dmac::ReadyFuture>>(
        self,
        dma_channel: D,
    ) -> I2cFuture<C, D> {
        I2cFuture {
            i2c: I2c {
                config: self.i2c.config,
                _dma_channel: dma_channel,
            },
        }
    }

    async fn write_one(&mut self, byte: u8) -> Result<(), i2c::Error> {
        self.wait_flags(Flags::MB | Flags::ERROR).await;
        self.i2c.read_status().check_bus_error()?;
        self.i2c.config.as_mut().registers.write_one(byte);
        Ok(())
    }

    async fn read_one(&mut self) -> Result<u8, i2c::Error> {
        self.wait_flags(Flags::SB | Flags::ERROR).await;
        self.i2c.read_status().check_bus_error()?;
        Ok(self.i2c.config.as_mut().registers.read_one())
    }
}

impl<C: AnyConfig, D> AsRef<I2c<C, D>> for I2cFuture<C, D> {
    #[inline]
    fn as_ref(&self) -> &I2c<C, D> {
        &self.i2c
    }
}

impl<C: AnyConfig, D> AsMut<I2c<C, D>> for I2cFuture<C, D> {
    #[inline]
    fn as_mut(&mut self) -> &mut I2c<C, D> {
        &mut self.i2c
    }
}

impl<C, D> ErrorType for I2cFuture<C, D>
where
    C: AnyConfig,
{
    type Error = i2c::Error;
}

impl<C: AnyConfig> I2cFuture<C> {
    #[inline]
    async fn do_read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), i2c::Error> {
        self.i2c.config.as_mut().registers.start_read(addr)?;

        // Some manual iterator gumph because we need to ack bytes after the first.
        let mut iter = buffer.iter_mut();
        *iter.next().expect("buffer len is at least 1") = self.read_one().await?;

        for byte in iter {
            // Ack the last byte so we can receive another one
            self.i2c.config.as_mut().registers.cmd_read();
            *byte = self.read_one().await?;
        }

        Ok(())
    }

    #[inline]
    async fn continue_read(&mut self, buffer: &mut [u8]) -> Result<(), i2c::Error> {
        for byte in buffer.iter_mut() {
            self.i2c.config.as_mut().registers.cmd_read();
            *byte = self.read_one().await?;
        }
        Ok(())
    }

    #[inline]
    async fn do_write(&mut self, address: u8, buffer: &[u8]) -> Result<(), i2c::Error> {
        self.i2c.config.as_mut().registers.start_write(address)?;

        for byte in buffer {
            self.write_one(*byte).await?;
        }
        Ok(())
    }

    #[inline]
    async fn continue_write(&mut self, buffer: &[u8]) -> Result<(), i2c::Error> {
        for byte in buffer {
            self.write_one(*byte).await?;
        }
        Ok(())
    }
}

impl<C: AnyConfig> I2cTrait for I2cFuture<C> {
    #[inline]
    async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
        self.do_read(address, buffer).await?;
        self.i2c.config.as_mut().registers.cmd_stop();
        Ok(())
    }

    #[inline]
    async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
        self.do_write(address, bytes).await?;
        self.i2c.cmd_stop();
        Ok(())
    }

    #[inline]
    async fn write_read(
        &mut self,
        address: u8,
        write_buf: &[u8],
        read_buf: &mut [u8],
    ) -> Result<(), Self::Error> {
        self.do_write(address, write_buf).await?;
        self.i2c.config.as_mut().registers.cmd_repeated_start();
        self.do_read(address, read_buf).await?;
        Ok(())
    }

    #[inline]
    async fn transaction(
        &mut self,
        address: u8,
        operations: &mut [Operation<'_>],
    ) -> Result<(), Self::Error> {
        let mut op_groups = chunk_operations(operations).peekable();

        while let Some(group) = op_groups.next() {
            let mut group = group.iter_mut();
            // Unwrapping is OK here because chunk_operations will never give us a 0-length
            // chunk.
            let op = group.next().unwrap();

            // First operation in the group - send a START with the address, and the first
            // operation.
            match op {
                Operation::Read(buf) => self.do_read(address, buf).await?,
                Operation::Write(buf) => self.do_write(address, buf).await?,
            }

            // For all subsequent operations, just send/read more bytes without any more
            // ceremony.
            for op in group {
                match op {
                    Operation::Read(buf) => self.continue_read(buf).await?,
                    Operation::Write(buf) => self.continue_write(buf).await?,
                }
            }

            let regs = &mut self.i2c.config.as_mut().registers;
            if op_groups.peek().is_some() {
                // If we still have more groups to go, send a repeated start
                regs.cmd_repeated_start();
            } else {
                // Otherwise, send a stop
                regs.cmd_stop();
            }
        }

        Ok(())
    }
}

#[cfg(feature = "dma")]
mod dma {
    use embedded_hal_1::i2c::Operation;
    use embedded_hal_async::i2c::I2c as I2cTrait;

    use super::*;
    use crate::dmac::sram::DmacDescriptor;
    use crate::dmac::{AnyChannel, Channel, ReadyFuture};
    use crate::sercom::dma::async_dma::{read_dma_linked, write_dma_linked};
    use crate::sercom::dma::SharedSliceBuffer;

    #[cfg(feature = "dma")]
    /// Convenience type for a [`I2cFuture`] in DMA mode.
    ///
    /// The type parameter `I` represents the DMA channel ID (`ChX`).
    pub type I2cFutureDma<C, I> = I2cFuture<C, Channel<I, ReadyFuture>>;

    impl<C, D> I2cFuture<C, D>
    where
        C: AnyConfig,
        D: AnyChannel<Status = ReadyFuture>,
    {
        /// Reclaim the DMA channel. Any subsequent I2C operations will no
        /// longer use DMA.
        pub fn take_dma_channel(self) -> (I2cFuture<C, crate::typelevel::NoneT>, D) {
            let (i2c, channel) = self.i2c.take_dma_channel();
            (I2cFuture { i2c }, channel)
        }
    }

    impl<C, S, D> I2cFuture<C, D>
    where
        C: AnyConfig<Sercom = S>,
        S: Sercom,
        D: AnyChannel<Status = ReadyFuture>,
    {
        /// Make an async I2C write transaction, with the option to add in
        /// linked transfers after this first transaction.
        ///
        /// # Safety
        ///
        /// If `next` is [`Some`], the pointer in its `descaddr` field, along
        /// with the descriptor it points to, etc, must point to a valid
        /// [`DmacDescriptor`] memory location, or be null. They must not be
        /// circular (ie, points to itself). Any linked transfer must
        /// strictly be a write transaction (source pointer is a byte buffer,
        /// destination pointer is the SERCOM DATA register).
        #[inline]
        pub(super) async unsafe fn write_linked(
            &mut self,
            address: u8,
            bytes: &[u8],
            next: Option<&mut DmacDescriptor>,
        ) -> Result<(), i2c::Error> {
            self.i2c.prepare_write_linked(address, bytes, &next)?;

            let sercom_ptr = self.i2c.sercom_ptr();
            let mut bytes = SharedSliceBuffer::from_slice(bytes);

            write_dma_linked::<_, _, S>(&mut self.i2c._dma_channel, sercom_ptr, &mut bytes, next)
                .await?;

            // Unfortunately, gotta take a polling approach here as there is no interrupt
            // source that can notify us of an IDLE bus state. Fortunately, it's usually not
            // long. 8-10 times around the loop will do the trick.
            while !self.i2c.read_status().is_idle() {
                core::hint::spin_loop();
            }
            self.i2c.read_status().check_bus_error()?;
            Ok(())
        }

        /// Asynchronously read into a buffer using DMA.
        #[inline]
        pub(super) async unsafe fn read_linked(
            &mut self,
            address: u8,
            mut buffer: &mut [u8],
            next: Option<&mut DmacDescriptor>,
        ) -> Result<(), i2c::Error> {
            self.i2c.prepare_read_linked(address, buffer, &next)?;
            let i2c_ptr = self.i2c.sercom_ptr();

            read_dma_linked::<_, _, S>(&mut self.i2c._dma_channel, i2c_ptr, &mut buffer, next)
                .await?;

            // Unfortunately, gotta take a polling approach here as there is no interrupt
            // source that can notify us of an IDLE bus state. Fortunately, it's usually not
            // long. 8-10 times around the loop will do the trick.
            while !self.i2c.read_status().is_idle() {
                core::hint::spin_loop();
            }
            self.i2c.read_status().check_bus_error()?;

            Ok(())
        }

        /// Asynchronously write from a buffer, then read into a buffer, all
        /// using DMA.
        ///
        /// This is an extremely common pattern: for example, writing a
        /// register address, then read its value from the slave.
        #[inline]
        pub async fn write_read(
            &mut self,
            addr: u8,
            write_buf: &[u8],
            read_buf: &mut [u8],
        ) -> Result<(), i2c::Error> {
            unsafe {
                self.write_linked(addr, write_buf, None).await?;
                self.read_linked(addr, read_buf, None).await?;
            }
            Ok(())
        }
    }

    impl<C, D> I2cTrait for I2cFuture<C, D>
    where
        C: AnyConfig,
        D: AnyChannel<Status = ReadyFuture>,
    {
        #[inline]
        async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
            unsafe { self.read_linked(address, buffer, None).await }
        }

        #[inline]
        async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
            unsafe { self.write_linked(address, bytes, None).await }
        }

        #[inline]
        async fn write_read(
            &mut self,
            address: u8,
            wr_buffer: &[u8],
            rd_buffer: &mut [u8],
        ) -> Result<(), Self::Error> {
            self.write_read(address, wr_buffer, rd_buffer).await?;
            Ok(())
        }

        #[inline]
        async fn transaction(
            &mut self,
            address: u8,
            operations: &mut [Operation<'_>],
        ) -> Result<(), Self::Error> {
            use crate::dmac::{channel, sram::DmacDescriptor};
            use crate::sercom::dma::SharedSliceBuffer;
            use Operation::{Read, Write};

            const NUM_LINKED_TRANSFERS: usize = 16;

            if operations.is_empty() {
                return Ok(());
            }

            let mut sercom_ptr = self.i2c.sercom_ptr();

            // Reserve some space for linked DMA transfer descriptors.
            // Uses 256 bytes of memory.
            //
            // In practice this means that we can only support 17 continuously
            // linked operations of the same type (R/W) before having to issue
            // an I2C STOP. DMA-enabled I2C transfers automatically issue stop
            // commands, and there is no way to turn off that behaviour.
            //
            //  In the event that we have more than 17 contiguous operations of
            //  the same type, we must revert to the byte-by-byte I2C implementations.
            let mut descriptors = heapless::Vec::<DmacDescriptor, NUM_LINKED_TRANSFERS>::new();

            // Arrange operations in groups of contiguous types (R/W)
            let op_groups = operations.chunk_by_mut(|this, next| {
                matches!((this, next), (Write(_), Write(_)) | (Read(_), Read(_)))
            });

            for group in op_groups {
                descriptors.clear();

                // Default to byte-by-byte impl if we have more than 17 continuous operations,
                // as we would overflow our DMA linked transfer reeserved space otherwise.
                if group.len() > NUM_LINKED_TRANSFERS {
                    self.i2c.transaction_byte_by_byte(address, group)?;
                } else {
                    // --- Setup all linked descriptors ---

                    // Skip the first operation; we will deal with it when creating the I2C transfer
                    // (read_dma_linked/write_dma_linked). Every other operation is a linked
                    // transfer, and we must treat them accordingly.
                    for op in group.iter_mut().skip(1) {
                        match op {
                            Read(ref mut buffer) => {
                                if buffer.is_empty() {
                                    continue;
                                }
                                // Add a new linked descriptor to the stack
                                descriptors
                                    .push(DmacDescriptor::default())
                                    .unwrap_or_else(|_| panic!("BUG: DMAC descriptors overflow"));
                                let last_descriptor = descriptors.last_mut().unwrap();
                                let next_ptr =
                                    (last_descriptor as *mut DmacDescriptor).wrapping_add(1);

                                unsafe {
                                    channel::write_descriptor(
                                        last_descriptor,
                                        &mut sercom_ptr,
                                        buffer,
                                        // Always link the next descriptor. We then set the last
                                        // transfer's link pointer to null lower down in the code.
                                        next_ptr,
                                    );
                                }
                            }

                            Write(bytes) => {
                                if bytes.is_empty() {
                                    continue;
                                }
                                // Add a new linked descriptor to the stack
                                descriptors
                                    .push(DmacDescriptor::default())
                                    .unwrap_or_else(|_| panic!("BUG: DMAC descriptors overflow"));
                                let last_descriptor = descriptors.last_mut().unwrap();
                                let next_ptr =
                                    (last_descriptor as *mut DmacDescriptor).wrapping_add(1);

                                let mut bytes = SharedSliceBuffer::from_slice(bytes);
                                unsafe {
                                    channel::write_descriptor(
                                        last_descriptor,
                                        &mut bytes,
                                        &mut sercom_ptr,
                                        // Always link the next descriptor. We then set the last
                                        // transfer's link pointer to null lower down in the code.
                                        next_ptr,
                                    );
                                }
                            }
                        }
                    }

                    // Set the last descriptor to a null pointer to stop the transfer, and avoid
                    // buffer overflow UB.
                    if let Some(d) = descriptors.last_mut() {
                        d.set_next_descriptor(core::ptr::null_mut());
                    }

                    // Now setup and perform the actual transfer
                    match group.first_mut().unwrap() {
                        Read(ref mut buffer) => unsafe {
                            self.read_linked(address, buffer, descriptors.first_mut())
                                .await?;
                        },
                        Write(bytes) => unsafe {
                            self.write_linked(address, bytes, descriptors.first_mut())
                                .await?;
                        },
                    }
                }
            }

            Ok(())
        }
    }
}

#[cfg(feature = "dma")]
pub use dma::*;