atsamd_hal/peripherals/nvm/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
//! # Non-volatile Memory Controller
//!
//! This module allows users to interact with non-volatile memory controller.
//!
//! Nvmctrl is an intermediary between memory buses and physical non-volatile
//! memory. It provides means of managing a flash memory content, its properties
//! (cache, wait states, bootloader blocks protection), power management and
//! address remapping if necessary (in case bank mechanism is used). It also
//! provides an indirection mechanism to achieve non-volatile RAM-like memory
//! within last sectors of a physical flash (More in [`smart_eeprom`] module).
//!
//! NVM supports splitting flash into two sections (opt-in feature) called
//! banks. Bank considered active is mapped to _virtual_ address `0x0`, meaning
//! it contains currently executed application. Through NVM command & control
//! interface, banks can be swapped and MCU reset, so the firmware from the
//! other bank will run after restart.
//!
//! Module features:
//! - Erase & write over non-volatile memory in a device.
//! - Swap banks
#![warn(missing_docs)]

pub mod smart_eeprom;

pub use crate::pac::nvmctrl::ctrla::Prmselect;
use crate::pac::nvmctrl::ctrlb::Cmdselect;
use crate::pac::Nvmctrl;
use core::num::NonZeroU32;
use core::ops::Range;
use core::ptr::addr_of;

use bitfield::bitfield;

/// Retrieve a total NVM size using HW registers
#[inline(always)]
pub fn retrieve_flash_size() -> u32 {
    static mut FLASHSIZE: Option<NonZeroU32> = None;
    // Safety: Lazy initialization of a static variable - interactions with
    // `Option<NonZeroU32>` should be atomic
    unsafe {
        match FLASHSIZE {
            Some(x) => x.into(),
            None => {
                let nvm = &*Nvmctrl::ptr();
                let nvm_params = nvm.param().read();
                if !nvm_params.psz().is_512() {
                    unreachable!("NVM page size is always expected to be 512 bytes");
                }
                let nvm_pages = nvm_params.nvmp().bits() as u32;
                let flash_size = nvm_pages * 512;
                // Safety: `flash_size` will never be 0
                FLASHSIZE = Some(NonZeroU32::new_unchecked(flash_size));
                flash_size
            }
        }
    }
}

/// Retrieve a bank size using HW registers
#[inline(always)]
pub fn retrieve_bank_size() -> u32 {
    retrieve_flash_size() / 2
}

/// Size of a page in bytes
pub const PAGESIZE: u32 = 512;

/// Size of one block
pub const BLOCKSIZE: u32 = 512 * 16;

/// Size of a quad word
pub const QUADWORDSIZE: u32 = 16;

/// Non-volatile memory controller
pub struct Nvm {
    /// PAC peripheral
    nvm: Nvmctrl,
}

/// Errors generated by the NVM peripheral
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum PeripheralError {
    /// NVM error
    NvmError,
    /// Single ECC error
    EccSingleError,
    /// Dual ECC error
    EccDualError,
    /// Locked error
    LockError,
    /// Programming error
    ProgrammingError,
    /// Address error
    AddressError,
}

/// Driver errors
#[non_exhaustive]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    /// Address range outside of flash
    NonFlash,
    /// Target sector is protected
    Protected,
    /// Memory region is used by SmartEEPROM
    SmartEepromArea,
    /// Errors generated by hardware
    Peripheral(PeripheralError),
    /// The DSU failed in some way
    Dsu(super::dsu::Error),
    /// An alignment requirement was not fulfilled
    Alignment,
}

/// Physical flash banks
#[derive(PartialEq, Debug)]
pub enum PhysicalBank {
    /// Flash bank A
    A,
    /// Flash bank B
    B,
}

#[derive(PartialEq, Debug, Copy, Clone)]
/// Flash banks identified by which one we boot from.
///
/// Memory layout:
/// ```text
/// [  Active bank  | Inactive bank ]
/// ^               ^               ^
/// 0x0000_0000     flash_size/2    flash_size
/// ```
pub enum Bank {
    /// Bank that is mapped to 0x0000_0000
    ///
    /// Active bank occupies first half of the flash memory.
    Active,
    /// Bank that is not mapped to 0x0000_0000
    ///
    /// Inactive bank occupies second half of the flash memory.
    Inactive,
}

impl Bank {
    /// Provides the address of the bank
    #[inline]
    pub fn address(&self) -> u32 {
        match self {
            Bank::Active => 0,
            Bank::Inactive => retrieve_bank_size(),
        }
    }

    /// Provides bank length in bytes
    #[inline]
    pub fn length(&self) -> u32 {
        retrieve_bank_size()
    }
}

/// NVM result type
pub type Result<T> = core::result::Result<T, Error>;

impl Nvm {
    /// Pointer to the userpage region of the flash memory
    ///
    /// Note: *Never* call `core::ptr::read_volatile` on this pointer, yields
    /// very poor codegen (around 9 KiB bytes of code)
    pub const USERPAGE_ADDR: *const [u8; 512] = 0x0080_4000 as _;

    /// Create a new NVM controller or handle failure from DSU
    #[inline]
    pub fn new(nvm: Nvmctrl) -> Self {
        Self { nvm }
    }

    /// Raw access to the registers.
    ///
    /// # Safety
    ///
    /// The abstraction assumes that it has exclusive ownership of the
    /// registers. Direct access can break such assumptions.
    pub unsafe fn registers(&self) -> &Nvmctrl {
        &self.nvm
    }

    /// Swap the flash banks. The processor will be reset, after which the
    /// inactive bank will become the active bank.
    ///
    /// # Safety
    ///
    /// Ensure there is a working, memory safe program in place in the inactive
    /// bank before calling.
    #[inline]
    pub unsafe fn bank_swap(&mut self) -> ! {
        let _ = self.command_sync(Cmdselect::Bkswrst);
        // The reset will happen atomically with the rest of the command, so getting
        // here is an error.
        unreachable!();
    }

    /// Set the power reduction mode
    #[inline]
    pub fn power_reduction_mode(&mut self, prm: Prmselect) {
        self.nvm.ctrla().modify(|_, w| w.prm().variant(prm));
    }

    /// Check if the flash is boot protected
    #[inline]
    pub fn is_boot_protected(&self) -> bool {
        !self.nvm.status().read().bpdis().bit()
    }

    /// Get first bank
    #[inline]
    pub fn first_bank(&self) -> PhysicalBank {
        if self.nvm.status().read().afirst().bit() {
            PhysicalBank::A
        } else {
            PhysicalBank::B
        }
    }

    /// Set address for reading/writing
    #[inline]
    fn set_address(&mut self, address: u32) {
        unsafe {
            self.nvm
                .addr()
                .write(|w| w.addr().bits(address & 0x00ff_ffff));
        }
    }

    /// Execute a command, wait until it is done and check error states
    #[inline]
    fn command_sync(&mut self, command: Cmdselect) -> Result<()> {
        // Wait until STATUS.READY
        while !self.nvm.status().read().ready().bit() {}

        self.nvm
            .ctrlb()
            .write(|w| w.cmdex().key().cmd().variant(command));

        // Wait until INTFLAG.DONE
        while !self.nvm.intflag().read().done().bit() {}
        // Clear INTFLAG.DONE
        self.nvm.intflag().write(|w| w.done().set_bit());

        self.manage_error_states()
    }

    /// Read the peripheral state to check error flags and clear the up
    /// afterwards
    #[inline]
    fn manage_error_states(&mut self) -> Result<()> {
        let read_intflag = self.nvm.intflag().read();
        // Check ADDRE and LOCKE first as it is more specific than PROGE
        let state = if read_intflag.addre().bit_is_set() {
            Err(Error::Peripheral(PeripheralError::AddressError))
        } else if read_intflag.locke().bit_is_set() {
            Err(Error::Peripheral(PeripheralError::LockError))
        } else if read_intflag.proge().bit_is_set() {
            Err(Error::Peripheral(PeripheralError::ProgrammingError))
        } else {
            Ok(())
        };

        // Clear error flags
        self.nvm
            .intflag()
            .write(|w| w.addre().set_bit().locke().set_bit().proge().set_bit());

        state
    }

    /// Read the user page from the flash memory
    #[inline]
    pub fn read_userpage(&self) -> Userpage {
        let mut userpage = RawUserpage([0_u8; 512]);
        // Safety:
        // - Nvm is a singleton because it is constructed using the PAC singleton
        //   Nvmctrl.
        // - You need Nvm or Nvmctrl to modify the memory, so the &self singleton is
        //   enough to prevent concurrent modification.
        // - Underlying [u8; 512] has no reserved bit patterns.
        // - The pointer is aligned.
        // Note: userpage is accessed through the iterator in order to avoid poor
        // codegen for `read_volatile` call on the array pointer.
        userpage
            .0
            .iter_mut()
            .zip((0..512).map(|i| unsafe {
                Self::USERPAGE_ADDR
                    .cast::<u8>()
                    .wrapping_offset(i)
                    .read_volatile()
            }))
            .for_each(|(l, r)| *l = r);
        userpage
    }

    /// Modify the NVM User Page (aka User Row/UROW)
    ///
    /// User is expected to provide a closure that modifies the user page
    /// according to the user's needs.
    ///
    /// This method will read the current user page, call the closure on it,
    /// *erase the page in the flash memory* and *write it* back again.
    ///
    /// Erasure and flashing is skipped if the userpage stays the same after
    /// calling the closure on it.
    ///
    /// # Safety
    ///
    /// Even though factory calibration settings are not modifiable via setters
    /// they can be still mutated via raw access to the `userpage.0` field.
    ///
    /// Power loss between the erase and the write will result in *data loss*.
    ///
    /// Thus, users are advised to *backup factory calibration settings* before
    /// mutating the user page!
    ///
    /// If these settings are erased, device might stop behaving correctly!
    #[inline]
    pub unsafe fn modify_userpage(
        &mut self,
        f: impl FnOnce(&mut Userpage),
    ) -> Result<UserpageStatus> {
        let original = self.read_userpage();
        let mut modified = original.clone();

        f(&mut modified);

        if original != modified {
            unsafe { self.erase(NvmErase::Userpage)? };
            unsafe { self.write(NvmWrite::Userpage(&modified))? };

            Ok(UserpageStatus::Updated)
        } else {
            Ok(UserpageStatus::Skipped)
        }
    }

    /// Read the calibration area
    #[inline]
    pub fn calibration_area(&self) -> CalibrationArea {
        let mut buffer = 0_u64;
        let base_addr: *const u8 = 0x0080_0080 as *const u8;

        for i in 0..6 {
            buffer |=
                unsafe { core::ptr::read_volatile(base_addr.offset(i as isize)) as u64 } << (i * 8);
        }

        CalibrationArea(buffer)
    }

    /// Read the calibration area for temperatures
    #[inline]
    pub fn temperatures_calibration_area(&self) -> TemperaturesCalibrationArea {
        let mut buffer = 0_u128;
        let base_addr: *const u8 = 0x0080_0100 as *const u8;

        for i in 0..11 {
            buffer |= unsafe { core::ptr::read_volatile(base_addr.offset(i as isize)) as u128 }
                << (i * 8);
        }

        TemperaturesCalibrationArea(buffer)
    }

    /// Enable security bit
    ///
    /// It locks the chip from external access for code security. Consult the
    /// datasheet for more details.
    ///
    /// In order to disable it, chip erase command must be issued through the
    /// debugger.
    #[inline]
    pub fn enable_security_bit(&mut self) -> Result<()> {
        self.command_sync(Cmdselect::Ssb)
    }

    /// Enable the chip erase lock
    ///
    /// It disables the chip erase capability.
    ///
    /// # Safety
    ///
    /// Together with [`Self::enable_security_bit`], it completely locks the MCU
    /// down from any external interaction via debugger, thus effectively
    /// *bricking the device*. Flashed firmware *must provide a way* to
    /// execute [`Self::disable_chip_erase_lock`] method in order to enable
    /// the debugger access again.
    #[inline]
    pub unsafe fn enable_chip_erase_lock(&mut self) -> Result<()> {
        self.command_sync(Cmdselect::Celck)
    }

    /// Disable the chip erase lock
    ///
    /// It enables the chip erase capability through the debugger.
    #[inline]
    pub fn disable_chip_erase_lock(&mut self) -> Result<()> {
        self.command_sync(Cmdselect::Ceulck)
    }

    /// Enable/disable boot protection
    ///
    /// Userpage's NVM BOOT field defines a memory region that is supposed to be
    /// protected. `Nvmctrl.STATUS.BOOTPROT` is a readonly HW register populated
    /// on reset with a value from a userpage. By default, 0
    #[inline]
    pub fn boot_protection(&mut self, protect: bool) -> Result<()> {
        // Check if requested state differs from current state
        if self.is_boot_protected() != protect {
            // Requires both command and key so the command is allowed to execute
            if protect {
                // Issue Clear boot protection disable (enable bootprotection)
                self.command_sync(Cmdselect::Cbpdis)
            } else {
                // Issue Set boot protection disable (disable bootprotection)
                self.command_sync(Cmdselect::Sbpdis)
            }
        } else {
            Ok(())
        }
    }

    /// Enable/disable region lock
    ///
    /// Flash memory is split into 32 regions. The 32 bits of the `mask`
    /// determine if each region should be locked (if its bit is 0) and prevent
    /// writing and erasing pages, or unlocked (if its bit is 1) and allow
    /// writing and erasing pages.
    ///
    /// Less significant bits represent lower addresses, more significant bits
    /// represent higher addresses.
    ///
    /// For example mask `0xFFFF_0000` implies that active bank should be locked
    /// while inactive bank should be unlocked.
    #[inline]
    pub fn region_lock(&mut self, mask: u32) -> Result<()> {
        const REGIONS_COUNT: u32 = 32;
        const FLASH_START: u32 = 0;
        let flash_end = retrieve_flash_size();
        let region_size = (flash_end - FLASH_START) / REGIONS_COUNT;
        for (i, address) in (FLASH_START..flash_end)
            .step_by(region_size as usize)
            .enumerate()
        {
            self.set_address(address);
            let protect = mask & (1 << i) == 0;
            self.command_sync(if protect {
                Cmdselect::Lr
            } else {
                Cmdselect::Ur
            })?;
        }
        Ok(())
    }

    /// Write to the main address space flash memory from a slice
    ///
    /// This call will fail if area that is being written to is
    /// - outside of the main address space flash area
    /// - write protected (BOOTPROT)
    /// - overlapping with SmartEEPROM flash region
    ///
    /// `destination` has to be 4 bytes aligned.
    ///
    /// # Safety
    ///
    /// Writes to the main address space flash area containing currently
    /// executed application are unsound.
    #[inline]
    pub unsafe fn write_flash_from_slice(
        &mut self,
        destination: *mut u32,
        source_slice: &[u32],
        write_granularity: WriteGranularity,
    ) -> Result<()> {
        let source = source_slice.as_ptr();
        let words = source_slice.len() as u32;

        // Safety: prerequisites bubbled up to the method signature
        unsafe {
            self.write(NvmWrite::MainAddressSpace {
                destination,
                source,
                words,
                write_granularity,
            })
        }
    }

    /// Write to the main address space flash memory
    ///
    /// This call will fail if area that is being written to is
    /// - outside of the main address space flash area
    /// - write protected (BOOTPROT)
    /// - overlapping with SmartEEPROM flash region
    ///
    /// `destination` has to be 4 bytes aligned.
    /// `source` has to be 4 bytes aligned.
    ///
    /// # Safety
    ///
    /// Writes to the main address space flash area containing currently
    /// executed application are unsound.
    #[inline]
    pub unsafe fn write_flash(
        &mut self,
        destination: *mut u32,
        source: *const u32,
        words: u32,
        write_granularity: WriteGranularity,
    ) -> Result<()> {
        // Safety: prerequisites bubbled up to the method signature
        unsafe {
            self.write(NvmWrite::MainAddressSpace {
                destination,
                source,
                words,
                write_granularity,
            })
        }
    }

    /// Write to the flash memory
    ///
    /// Failure modes regarding writes to the main address space flash
    /// area are mentioned in [`Self::write_flash`] documentation
    ///
    /// # Safety
    ///
    /// Safety requirements regarding writes to the main address space flash
    /// area are mentioned in [`Self::write_flash`] documentation
    ///
    /// Safety requirements regarding userpage modifications are mentioned in
    /// [`Self::modify_userpage`] documentation
    #[inline]
    unsafe fn write(&mut self, op: NvmWrite) -> Result<()> {
        let (destination_address, source_address, words, granularity) = match op {
            NvmWrite::MainAddressSpace {
                destination,
                source,
                words,
                write_granularity,
            } => (destination as u32, source as u32, words, write_granularity),
            NvmWrite::Userpage(userpage) => (
                Self::USERPAGE_ADDR as u32,
                addr_of!(userpage.0) as u32,
                PAGESIZE / core::mem::size_of::<u32>() as u32,
                WriteGranularity::QuadWord,
            ),
        };

        // Length of memory step
        let step_size = core::mem::size_of::<u32>() as u32;
        // Length of data in bytes
        let length = words * step_size;
        let write_size = granularity.size();

        let read_addresses = source_address..(source_address + length);
        let write_addresses = destination_address..(destination_address + length);

        if source_address % step_size != 0 {
            return Err(Error::Alignment);
        }

        if destination_address % step_size != 0 {
            return Err(Error::Alignment);
        }

        match op {
            NvmWrite::MainAddressSpace { .. } => {
                if self.contains_non_flash_memory_area(&write_addresses) {
                    return Err(Error::NonFlash);
                } else if self.contains_bootprotected(&write_addresses) {
                    return Err(Error::Protected);
                } else if self.contains_smart_eeprom(&write_addresses) {
                    return Err(Error::SmartEepromArea);
                }
            }
            NvmWrite::Userpage(_) => {
                // Nothing to check
            }
        }

        self.command_sync(Cmdselect::Pbc)?;
        // Track whether we have unwritten data in the page buffer
        let mut dirty = false;
        // Zip two iterators, one counter and one with the addr word aligned
        for (destination_address, source_address) in write_addresses
            .step_by(step_size as usize)
            .zip(read_addresses.step_by(step_size as usize))
        {
            // Write to memory, 32 bits, 1 word.
            // The data is placed in the page buffer and ADDR is updated automatically.
            // Memory is not written until the write page command is issued later.
            let value = core::ptr::read_volatile(source_address as *const u32);
            core::ptr::write_volatile(destination_address as *mut u32, value);
            dirty = true;

            // If we are about to cross a page boundary (and run out of page buffer), write
            // to flash
            if destination_address % write_size >= write_size - step_size {
                // Perform a write
                self.command_sync(granularity.command())?;
                dirty = false;
            }
        }

        if dirty {
            // The dirty flag has fulfilled its role here, so we don't bother to maintain
            // its invariant anymore. Otherwise, the compiler would warn of
            // unused assignments. Write last page
            self.command_sync(granularity.command())?
        }

        Ok(())
    }

    /// Erase the portion of the main address space flash memory
    ///
    /// Erase granularity is expressed in blocks (16 pages == 8192 bytes)
    ///
    /// This call will fail if area that is being erased is
    /// - outside of the main address space flash area
    /// - write protected (BOOTPROT)
    /// - overlapping with SmartEEPROM flash region
    ///
    /// # Safety
    ///
    /// Erasure of the main address space flash area containing currently
    /// executed application is unsound.
    #[inline]
    pub unsafe fn erase_flash(&mut self, address: *mut u32, blocks: u32) -> Result<()> {
        // Safety: prerequisites bubbled up to the method signature
        unsafe { self.erase(NvmErase::Flash { address, blocks }) }
    }

    /// Erase the flash memory.
    ///
    /// Failure modes regarding erasure of the main address space flash
    /// area are mentioned in [`Self::erase_flash`] documentation
    ///
    /// # Safety
    ///
    /// Safety requirements regarding erasure of the main address space flash
    /// area are mentioned in [`Self::erase_flash`] documentation
    ///
    /// Safety requirements regarding userpage modifications are mentioned in
    /// [`Self::modify_userpage`] documentation
    #[inline]
    unsafe fn erase(&mut self, op: NvmErase) -> Result<()> {
        let (address, length, granularity) = match op {
            NvmErase::Flash { address, blocks } => {
                (address as u32, blocks, EraseGranularity::Block)
            }
            NvmErase::Userpage => (Self::USERPAGE_ADDR as u32, 1, EraseGranularity::Page),
        };

        // Align to block/page boundary
        // While the NVM will accept any address in the block, we need to compute the
        // aligned address to check for boot protection.
        let flash_address = address - address % granularity.size();
        let range_to_erase = flash_address..(flash_address + length * granularity.size());

        match op {
            NvmErase::Flash { .. } => {
                if self.contains_non_flash_memory_area(&range_to_erase) {
                    return Err(Error::NonFlash);
                } else if self.contains_bootprotected(&range_to_erase) {
                    return Err(Error::Protected);
                } else if self.contains_smart_eeprom(&range_to_erase) {
                    return Err(Error::SmartEepromArea);
                }
            }
            NvmErase::Userpage => {
                // Nothing to check
            }
        }

        for address in range_to_erase.step_by(granularity.size() as usize) {
            // Set target address to current block/page offset
            self.set_address(address);

            // Erase block/page, wait for completion
            self.command_sync(granularity.command())?
        }

        Ok(())
    }

    #[inline]
    fn contains_bootprotected(&self, input: &Range<u32>) -> bool {
        // Calculate size that is protected for bootloader
        //   * 15 = no bootprotection, default value
        //   * 0 = max bootprotection, 15 * 8Kibyte = 120KiB
        //   * (15 - bootprot) * 8KiB = protected size
        let bootprot = self.nvm.status().read().bootprot().bits();
        let bp_space = 8 * 1024 * (15 - bootprot) as u32;

        let boot = &(Bank::Active.address()..(Bank::Active.address() + bp_space));
        self.is_boot_protected() && range_overlap(input, boot)
    }

    #[inline]
    fn contains_smart_eeprom(&self, input: &Range<u32>) -> bool {
        let smart_eeprom_allocated_blocks = self.nvm.seestat().read().sblk().bits() as u32;
        let smart_eeprom_end = Bank::Inactive.address() + Bank::Inactive.length();
        let smart_eeprom_start = smart_eeprom_end - smart_eeprom_allocated_blocks * BLOCKSIZE;
        let smart_eeprom = &(smart_eeprom_start..smart_eeprom_end);
        range_overlap(input, smart_eeprom)
    }

    #[inline]
    fn contains_non_flash_memory_area(&self, input: &Range<u32>) -> bool {
        input.end > retrieve_flash_size()
    }

    /// Retrieve SmartEEPROM
    #[inline]
    pub fn smart_eeprom(&mut self) -> smart_eeprom::Result<'_> {
        smart_eeprom::SmartEepromMode::retrieve(self)
    }
}

/// The outcome of [`Nvm::modify_userpage`]
#[derive(Copy, Clone, Debug)]
pub enum UserpageStatus {
    /// Userpage has been updated
    Updated,
    /// Update has been skipped; expected value is already present.
    Skipped,
}

enum NvmWrite<'a> {
    /// Writes to the flash memory within the main address space
    MainAddressSpace {
        destination: *mut u32,
        source: *const u32,
        words: u32,
        write_granularity: WriteGranularity,
    },
    /// Writes the userpage to the corresponding flash memory
    Userpage(&'a Userpage),
}

enum NvmErase {
    Flash { address: *mut u32, blocks: u32 },
    Userpage,
}

/// Data erased per command
#[derive(Copy, Clone, Debug)]
enum EraseGranularity {
    /// One block. This erase type is supported by main memory
    Block,
    /// One page. This erase type is supported for the AUX memory
    Page,
}

/// Data written per command
#[derive(Copy, Clone, Debug)]
pub enum WriteGranularity {
    /// Four words (16 bytes). Expected for user page writes
    QuadWord,
    /// One page (512 bytes)
    Page,
}

impl EraseGranularity {
    #[inline]
    fn command(&self) -> Cmdselect {
        match self {
            Self::Block => Cmdselect::Eb,
            Self::Page => Cmdselect::Ep,
        }
    }

    #[inline]
    fn size(&self) -> u32 {
        match self {
            Self::Block => BLOCKSIZE,
            Self::Page => PAGESIZE,
        }
    }
}

impl WriteGranularity {
    #[inline]
    fn command(&self) -> Cmdselect {
        match self {
            Self::QuadWord => Cmdselect::Wqw,
            Self::Page => Cmdselect::Wp,
        }
    }

    #[inline]
    fn size(&self) -> u32 {
        match self {
            Self::QuadWord => QUADWORDSIZE,
            Self::Page => PAGESIZE,
        }
    }
}

fn range_overlap(a: &Range<u32>, b: &Range<u32>) -> bool {
    a.start < b.end && b.start < a.end
}

/// Type alias to the userpage with a concrete underlying storage type
pub type Userpage = RawUserpage<[u8; 512]>;

bitfield! {
    /// Raw userpage POD struct that exposes bitfields via methods
    #[derive(Clone, PartialEq, Eq)]
    pub struct RawUserpage([u8]);
    impl Debug;
    u8;
    /// Access the `bod33_disable` field
    pub bod33_disable, set_bod33_disable: 0;
    /// Access the `bod33_level` field
    pub bod33_level, set_bod33_level: 8, 1;
    /// Access the `bod33_action` field
    pub bod33_action, set_bod33_action: 10, 9;
    /// Access the `bod33_hysteresis` field
    pub bod33_hysteresis, set_bod33_hysteresis: 14, 11;
    /// Access the `bod12_calibration_parameters` field
    pub u16, bod12_calibration_parameters, set_bod12_calibration_parameters: 25, 15;
    /// Access the `nvm_bootloader_size` field
    pub nvm_bootloader_size, set_nvm_bootloader_size: 29, 26;
    /// Access the `reserved_0` field
    pub reserved_0, set_reserved_0: 31, 30;
    /// Access the `see_sblk` field
    pub see_sblk, set_see_sblk: 35, 32;
    /// Access the `see_psz` field
    pub see_psz, set_see_psz: 38, 36;
    /// Access the `ram_ecc_disable` field
    pub ram_ecc_disable, set_ram_ecc_disable: 39;
    /// Access the `reserved_1` field
    pub reserved_1, set_reserved_1: 47, 40;
    /// Access the `wdt_enable` field
    pub wdt_enable, set_wdt_enable: 48;
    /// Access the `wdt_always_on` field
    pub wdt_always_on, set_wdt_always_on: 49;
    /// Access the `wdt_period` field
    pub wdt_period, set_wdt_period: 53, 50;
    /// Access the `wdt_window` field
    pub wdt_window, set_wdt_window: 57, 54;
    /// Access the `wdt_ewoffset` field
    pub wdt_ewoffset, set_wdt_ewoffset: 61, 58;
    /// Access the `wdt_wen` field
    pub wdt_wen, set_wdt_wen: 62;
    /// Access the `reserved_2` field
    pub reserved_2, set_reserved_2: 63;
    /// Access the `nvm_locks` field
    pub u32, nvm_locks, set_nvm_locks: 95, 64;
    /// Access the `userpage_0` field
    pub u32, userpage_0, set_userpage_0: 127, 96;
    /// Access the `reserved_3` field
    pub u32, reserved_3, set_reserved_3: 159, 128;
}

impl<T: AsRef<[u8]>> RawUserpage<T> {
    /// Access the general purpose user-writable section of the userpage via
    /// slice
    #[inline]
    pub fn userpage1_as_slice(&self) -> &[u8] {
        // `userpage1` starts on 160th bit (20th byte) and continues till the end of
        // the userpage
        &self.0.as_ref()[20..512]
    }
}
impl<T: AsMut<[u8]>> RawUserpage<T> {
    /// Access the general purpose user-writable section of the userpage via
    /// mutable slice
    #[inline]
    pub fn userpage1_as_slice_mut(&mut self) -> &mut [u8] {
        // `userpage1` starts on 160th bit (20th byte) and continues till the end of
        // the userpage
        &mut self.0.as_mut()[20..512]
    }
}

bitfield! {
    #[derive(Copy, Clone, Default)]
    /// POD-style struct representing NVM calibration area
    pub struct CalibrationArea(u64);
    impl Debug;
    u32;
    /// Access the `ac_bias` field. Setter is not provided.
    pub ac_bias, _: 1, 0;
    /// Access the `adc0_biascomp` field. Setter is not provided.
    pub adc0_biascomp, _: 4, 2;
    /// Access the `adc0_biasrefbuf` field. Setter is not provided.
    pub adc0_biasrefbuf, _: 7, 5;
    /// Access the `adc0_biasr2r` field. Setter is not provided.
    pub adc0_biasr2r, _: 10, 8;
    /// Access the `adc1_biascomp` field. Setter is not provided.
    pub adc1_biascomp, _: 18, 16;
    /// Access the `adc1_biasrefbuf` field. Setter is not provided.
    pub adc1_biasrefbuf, _: 21, 19;
    /// Access the `adc1_biasr2r` field. Setter is not provided.
    pub adc1_biasr2r, _: 24, 22;
    /// Access the `usb_transn` field. Setter is not provided.
    pub usb_transn, _: 36, 32;
    /// Access the `usb_transp` field. Setter is not provided.
    pub usb_transp, _: 41, 37;
    /// Access the `usb_trim` field. Setter is not provided.
    pub usb_trim, _: 44, 42;
}

bitfield! {
    #[derive(Copy, Clone, Default)]
    /// POD-style struct representing NVM calibration area for
    /// temperature calibration
    pub struct TemperaturesCalibrationArea(u128);
    impl Debug;
    u32;
    /// Access the `tli` field. Setter is not provided.
    pub tli, _: 7, 0;
    /// Access the `tld` field. Setter is not provided.
    pub tld, _: 11, 8;
    /// Access the `thi` field. Setter is not provided.
    pub thi, _: 19, 12;
    /// Access the `thd` field. Setter is not provided.
    pub thd, _: 23, 20;
    /// Access the `vpl` field. Setter is not provided.
    pub vpl, _: 51, 40;
    /// Access the `vph` field. Setter is not provided.
    pub vph, _: 63, 52;
    /// Access the `vcl` field. Setter is not provided.
    pub vcl, _: 75, 63;
    /// Access the `vch` field. Setter is not provided.
    pub vch, _: 87, 76;
}