atsamd_hal/peripherals/nvm/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
//! # Non-volatile Memory Controller
//!
//! This module allows users to interact with non-volatile memory controller.
//!
//! Nvmctrl is an intermediary between memory buses and physical non-volatile
//! memory. It provides means of managing a flash memory content, its properties
//! (cache, wait states, bootloader blocks protection), power management and
//! address remapping if necessary (in case bank mechanism is used). It also
//! provides an indirection mechanism to achieve non-volatile RAM-like memory
//! within last sectors of a physical flash (More in [`smart_eeprom`] module).
//!
//! NVM supports splitting flash into two sections (opt-in feature) called
//! banks. Bank considered active is mapped to _virtual_ address `0x0`, meaning
//! it contains currently executed application. Through NVM command & control
//! interface, banks can be swapped and MCU reset, so the firmware from the
//! other bank will run after restart.
//!
//! Module features:
//! - Erase & write over non-volatile memory in a device.
//! - Swap banks
#![warn(missing_docs)]
pub mod smart_eeprom;
pub use crate::pac::nvmctrl::ctrla::Prmselect;
use crate::pac::nvmctrl::ctrlb::Cmdselect;
use crate::pac::Nvmctrl;
use core::num::NonZeroU32;
use core::ops::Range;
use core::ptr::addr_of;
use bitfield::bitfield;
/// Retrieve a total NVM size using HW registers
#[inline(always)]
pub fn retrieve_flash_size() -> u32 {
static mut FLASHSIZE: Option<NonZeroU32> = None;
// Safety: Lazy initialization of a static variable - interactions with
// `Option<NonZeroU32>` should be atomic
unsafe {
match FLASHSIZE {
Some(x) => x.into(),
None => {
let nvm = &*Nvmctrl::ptr();
let nvm_params = nvm.param().read();
if !nvm_params.psz().is_512() {
unreachable!("NVM page size is always expected to be 512 bytes");
}
let nvm_pages = nvm_params.nvmp().bits() as u32;
let flash_size = nvm_pages * 512;
// Safety: `flash_size` will never be 0
FLASHSIZE = Some(NonZeroU32::new_unchecked(flash_size));
flash_size
}
}
}
}
/// Retrieve a bank size using HW registers
#[inline(always)]
pub fn retrieve_bank_size() -> u32 {
retrieve_flash_size() / 2
}
/// Size of a page in bytes
pub const PAGESIZE: u32 = 512;
/// Size of one block
pub const BLOCKSIZE: u32 = 512 * 16;
/// Size of a quad word
pub const QUADWORDSIZE: u32 = 16;
/// Non-volatile memory controller
pub struct Nvm {
/// PAC peripheral
nvm: Nvmctrl,
}
/// Errors generated by the NVM peripheral
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum PeripheralError {
/// NVM error
NvmError,
/// Single ECC error
EccSingleError,
/// Dual ECC error
EccDualError,
/// Locked error
LockError,
/// Programming error
ProgrammingError,
/// Address error
AddressError,
}
/// Driver errors
#[non_exhaustive]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Address range outside of flash
NonFlash,
/// Target sector is protected
Protected,
/// Memory region is used by SmartEEPROM
SmartEepromArea,
/// Errors generated by hardware
Peripheral(PeripheralError),
/// The DSU failed in some way
Dsu(super::dsu::Error),
/// An alignment requirement was not fulfilled
Alignment,
}
/// Physical flash banks
#[derive(PartialEq, Debug)]
pub enum PhysicalBank {
/// Flash bank A
A,
/// Flash bank B
B,
}
#[derive(PartialEq, Debug, Copy, Clone)]
/// Flash banks identified by which one we boot from.
///
/// Memory layout:
/// ```text
/// [ Active bank | Inactive bank ]
/// ^ ^ ^
/// 0x0000_0000 flash_size/2 flash_size
/// ```
pub enum Bank {
/// Bank that is mapped to 0x0000_0000
///
/// Active bank occupies first half of the flash memory.
Active,
/// Bank that is not mapped to 0x0000_0000
///
/// Inactive bank occupies second half of the flash memory.
Inactive,
}
impl Bank {
/// Provides the address of the bank
#[inline]
pub fn address(&self) -> u32 {
match self {
Bank::Active => 0,
Bank::Inactive => retrieve_bank_size(),
}
}
/// Provides bank length in bytes
#[inline]
pub fn length(&self) -> u32 {
retrieve_bank_size()
}
}
/// NVM result type
pub type Result<T> = core::result::Result<T, Error>;
impl Nvm {
/// Pointer to the userpage region of the flash memory
///
/// Note: *Never* call `core::ptr::read_volatile` on this pointer, yields
/// very poor codegen (around 9 KiB bytes of code)
pub const USERPAGE_ADDR: *const [u8; 512] = 0x0080_4000 as _;
/// Create a new NVM controller or handle failure from DSU
#[inline]
pub fn new(nvm: Nvmctrl) -> Self {
Self { nvm }
}
/// Raw access to the registers.
///
/// # Safety
///
/// The abstraction assumes that it has exclusive ownership of the
/// registers. Direct access can break such assumptions.
pub unsafe fn registers(&self) -> &Nvmctrl {
&self.nvm
}
/// Swap the flash banks. The processor will be reset, after which the
/// inactive bank will become the active bank.
///
/// # Safety
///
/// Ensure there is a working, memory safe program in place in the inactive
/// bank before calling.
#[inline]
pub unsafe fn bank_swap(&mut self) -> ! {
let _ = self.command_sync(Cmdselect::Bkswrst);
// The reset will happen atomically with the rest of the command, so getting
// here is an error.
unreachable!();
}
/// Set the power reduction mode
#[inline]
pub fn power_reduction_mode(&mut self, prm: Prmselect) {
self.nvm.ctrla().modify(|_, w| w.prm().variant(prm));
}
/// Check if the flash is boot protected
#[inline]
pub fn is_boot_protected(&self) -> bool {
!self.nvm.status().read().bpdis().bit()
}
/// Get first bank
#[inline]
pub fn first_bank(&self) -> PhysicalBank {
if self.nvm.status().read().afirst().bit() {
PhysicalBank::A
} else {
PhysicalBank::B
}
}
/// Set address for reading/writing
#[inline]
fn set_address(&mut self, address: u32) {
unsafe {
self.nvm
.addr()
.write(|w| w.addr().bits(address & 0x00ff_ffff));
}
}
/// Execute a command, wait until it is done and check error states
#[inline]
fn command_sync(&mut self, command: Cmdselect) -> Result<()> {
// Wait until STATUS.READY
while !self.nvm.status().read().ready().bit() {}
self.nvm
.ctrlb()
.write(|w| w.cmdex().key().cmd().variant(command));
// Wait until INTFLAG.DONE
while !self.nvm.intflag().read().done().bit() {}
// Clear INTFLAG.DONE
self.nvm.intflag().write(|w| w.done().set_bit());
self.manage_error_states()
}
/// Read the peripheral state to check error flags and clear the up
/// afterwards
#[inline]
fn manage_error_states(&mut self) -> Result<()> {
let read_intflag = self.nvm.intflag().read();
// Check ADDRE and LOCKE first as it is more specific than PROGE
let state = if read_intflag.addre().bit_is_set() {
Err(Error::Peripheral(PeripheralError::AddressError))
} else if read_intflag.locke().bit_is_set() {
Err(Error::Peripheral(PeripheralError::LockError))
} else if read_intflag.proge().bit_is_set() {
Err(Error::Peripheral(PeripheralError::ProgrammingError))
} else {
Ok(())
};
// Clear error flags
self.nvm
.intflag()
.write(|w| w.addre().set_bit().locke().set_bit().proge().set_bit());
state
}
/// Read the user page from the flash memory
#[inline]
pub fn read_userpage(&self) -> Userpage {
let mut userpage = RawUserpage([0_u8; 512]);
// Safety:
// - Nvm is a singleton because it is constructed using the PAC singleton
// Nvmctrl.
// - You need Nvm or Nvmctrl to modify the memory, so the &self singleton is
// enough to prevent concurrent modification.
// - Underlying [u8; 512] has no reserved bit patterns.
// - The pointer is aligned.
// Note: userpage is accessed through the iterator in order to avoid poor
// codegen for `read_volatile` call on the array pointer.
userpage
.0
.iter_mut()
.zip((0..512).map(|i| unsafe {
Self::USERPAGE_ADDR
.cast::<u8>()
.wrapping_offset(i)
.read_volatile()
}))
.for_each(|(l, r)| *l = r);
userpage
}
/// Modify the NVM User Page (aka User Row/UROW)
///
/// User is expected to provide a closure that modifies the user page
/// according to the user's needs.
///
/// This method will read the current user page, call the closure on it,
/// *erase the page in the flash memory* and *write it* back again.
///
/// Erasure and flashing is skipped if the userpage stays the same after
/// calling the closure on it.
///
/// # Safety
///
/// Even though factory calibration settings are not modifiable via setters
/// they can be still mutated via raw access to the `userpage.0` field.
///
/// Power loss between the erase and the write will result in *data loss*.
///
/// Thus, users are advised to *backup factory calibration settings* before
/// mutating the user page!
///
/// If these settings are erased, device might stop behaving correctly!
#[inline]
pub unsafe fn modify_userpage(
&mut self,
f: impl FnOnce(&mut Userpage),
) -> Result<UserpageStatus> {
let original = self.read_userpage();
let mut modified = original.clone();
f(&mut modified);
if original != modified {
unsafe { self.erase(NvmErase::Userpage)? };
unsafe { self.write(NvmWrite::Userpage(&modified))? };
Ok(UserpageStatus::Updated)
} else {
Ok(UserpageStatus::Skipped)
}
}
/// Read the calibration area
#[inline]
pub fn calibration_area(&self) -> CalibrationArea {
let mut buffer = 0_u64;
let base_addr: *const u8 = 0x0080_0080 as *const u8;
for i in 0..6 {
buffer |=
unsafe { core::ptr::read_volatile(base_addr.offset(i as isize)) as u64 } << (i * 8);
}
CalibrationArea(buffer)
}
/// Read the calibration area for temperatures
#[inline]
pub fn temperatures_calibration_area(&self) -> TemperaturesCalibrationArea {
let mut buffer = 0_u128;
let base_addr: *const u8 = 0x0080_0100 as *const u8;
for i in 0..11 {
buffer |= unsafe { core::ptr::read_volatile(base_addr.offset(i as isize)) as u128 }
<< (i * 8);
}
TemperaturesCalibrationArea(buffer)
}
/// Enable security bit
///
/// It locks the chip from external access for code security. Consult the
/// datasheet for more details.
///
/// In order to disable it, chip erase command must be issued through the
/// debugger.
#[inline]
pub fn enable_security_bit(&mut self) -> Result<()> {
self.command_sync(Cmdselect::Ssb)
}
/// Enable the chip erase lock
///
/// It disables the chip erase capability.
///
/// # Safety
///
/// Together with [`Self::enable_security_bit`], it completely locks the MCU
/// down from any external interaction via debugger, thus effectively
/// *bricking the device*. Flashed firmware *must provide a way* to
/// execute [`Self::disable_chip_erase_lock`] method in order to enable
/// the debugger access again.
#[inline]
pub unsafe fn enable_chip_erase_lock(&mut self) -> Result<()> {
self.command_sync(Cmdselect::Celck)
}
/// Disable the chip erase lock
///
/// It enables the chip erase capability through the debugger.
#[inline]
pub fn disable_chip_erase_lock(&mut self) -> Result<()> {
self.command_sync(Cmdselect::Ceulck)
}
/// Enable/disable boot protection
///
/// Userpage's NVM BOOT field defines a memory region that is supposed to be
/// protected. `Nvmctrl.STATUS.BOOTPROT` is a readonly HW register populated
/// on reset with a value from a userpage. By default, 0
#[inline]
pub fn boot_protection(&mut self, protect: bool) -> Result<()> {
// Check if requested state differs from current state
if self.is_boot_protected() != protect {
// Requires both command and key so the command is allowed to execute
if protect {
// Issue Clear boot protection disable (enable bootprotection)
self.command_sync(Cmdselect::Cbpdis)
} else {
// Issue Set boot protection disable (disable bootprotection)
self.command_sync(Cmdselect::Sbpdis)
}
} else {
Ok(())
}
}
/// Enable/disable region lock
///
/// Flash memory is split into 32 regions. The 32 bits of the `mask`
/// determine if each region should be locked (if its bit is 0) and prevent
/// writing and erasing pages, or unlocked (if its bit is 1) and allow
/// writing and erasing pages.
///
/// Less significant bits represent lower addresses, more significant bits
/// represent higher addresses.
///
/// For example mask `0xFFFF_0000` implies that active bank should be locked
/// while inactive bank should be unlocked.
#[inline]
pub fn region_lock(&mut self, mask: u32) -> Result<()> {
const REGIONS_COUNT: u32 = 32;
const FLASH_START: u32 = 0;
let flash_end = retrieve_flash_size();
let region_size = (flash_end - FLASH_START) / REGIONS_COUNT;
for (i, address) in (FLASH_START..flash_end)
.step_by(region_size as usize)
.enumerate()
{
self.set_address(address);
let protect = mask & (1 << i) == 0;
self.command_sync(if protect {
Cmdselect::Lr
} else {
Cmdselect::Ur
})?;
}
Ok(())
}
/// Write to the main address space flash memory from a slice
///
/// This call will fail if area that is being written to is
/// - outside of the main address space flash area
/// - write protected (BOOTPROT)
/// - overlapping with SmartEEPROM flash region
///
/// `destination` has to be 4 bytes aligned.
///
/// # Safety
///
/// Writes to the main address space flash area containing currently
/// executed application are unsound.
#[inline]
pub unsafe fn write_flash_from_slice(
&mut self,
destination: *mut u32,
source_slice: &[u32],
write_granularity: WriteGranularity,
) -> Result<()> {
let source = source_slice.as_ptr();
let words = source_slice.len() as u32;
// Safety: prerequisites bubbled up to the method signature
unsafe {
self.write(NvmWrite::MainAddressSpace {
destination,
source,
words,
write_granularity,
})
}
}
/// Write to the main address space flash memory
///
/// This call will fail if area that is being written to is
/// - outside of the main address space flash area
/// - write protected (BOOTPROT)
/// - overlapping with SmartEEPROM flash region
///
/// `destination` has to be 4 bytes aligned.
/// `source` has to be 4 bytes aligned.
///
/// # Safety
///
/// Writes to the main address space flash area containing currently
/// executed application are unsound.
#[inline]
pub unsafe fn write_flash(
&mut self,
destination: *mut u32,
source: *const u32,
words: u32,
write_granularity: WriteGranularity,
) -> Result<()> {
// Safety: prerequisites bubbled up to the method signature
unsafe {
self.write(NvmWrite::MainAddressSpace {
destination,
source,
words,
write_granularity,
})
}
}
/// Write to the flash memory
///
/// Failure modes regarding writes to the main address space flash
/// area are mentioned in [`Self::write_flash`] documentation
///
/// # Safety
///
/// Safety requirements regarding writes to the main address space flash
/// area are mentioned in [`Self::write_flash`] documentation
///
/// Safety requirements regarding userpage modifications are mentioned in
/// [`Self::modify_userpage`] documentation
#[inline]
unsafe fn write(&mut self, op: NvmWrite) -> Result<()> {
let (destination_address, source_address, words, granularity) = match op {
NvmWrite::MainAddressSpace {
destination,
source,
words,
write_granularity,
} => (destination as u32, source as u32, words, write_granularity),
NvmWrite::Userpage(userpage) => (
Self::USERPAGE_ADDR as u32,
addr_of!(userpage.0) as u32,
PAGESIZE / core::mem::size_of::<u32>() as u32,
WriteGranularity::QuadWord,
),
};
// Length of memory step
let step_size = core::mem::size_of::<u32>() as u32;
// Length of data in bytes
let length = words * step_size;
let write_size = granularity.size();
let read_addresses = source_address..(source_address + length);
let write_addresses = destination_address..(destination_address + length);
if source_address % step_size != 0 {
return Err(Error::Alignment);
}
if destination_address % step_size != 0 {
return Err(Error::Alignment);
}
match op {
NvmWrite::MainAddressSpace { .. } => {
if self.contains_non_flash_memory_area(&write_addresses) {
return Err(Error::NonFlash);
} else if self.contains_bootprotected(&write_addresses) {
return Err(Error::Protected);
} else if self.contains_smart_eeprom(&write_addresses) {
return Err(Error::SmartEepromArea);
}
}
NvmWrite::Userpage(_) => {
// Nothing to check
}
}
self.command_sync(Cmdselect::Pbc)?;
// Track whether we have unwritten data in the page buffer
let mut dirty = false;
// Zip two iterators, one counter and one with the addr word aligned
for (destination_address, source_address) in write_addresses
.step_by(step_size as usize)
.zip(read_addresses.step_by(step_size as usize))
{
// Write to memory, 32 bits, 1 word.
// The data is placed in the page buffer and ADDR is updated automatically.
// Memory is not written until the write page command is issued later.
let value = core::ptr::read_volatile(source_address as *const u32);
core::ptr::write_volatile(destination_address as *mut u32, value);
dirty = true;
// If we are about to cross a page boundary (and run out of page buffer), write
// to flash
if destination_address % write_size >= write_size - step_size {
// Perform a write
self.command_sync(granularity.command())?;
dirty = false;
}
}
if dirty {
// The dirty flag has fulfilled its role here, so we don't bother to maintain
// its invariant anymore. Otherwise, the compiler would warn of
// unused assignments. Write last page
self.command_sync(granularity.command())?
}
Ok(())
}
/// Erase the portion of the main address space flash memory
///
/// Erase granularity is expressed in blocks (16 pages == 8192 bytes)
///
/// This call will fail if area that is being erased is
/// - outside of the main address space flash area
/// - write protected (BOOTPROT)
/// - overlapping with SmartEEPROM flash region
///
/// # Safety
///
/// Erasure of the main address space flash area containing currently
/// executed application is unsound.
#[inline]
pub unsafe fn erase_flash(&mut self, address: *mut u32, blocks: u32) -> Result<()> {
// Safety: prerequisites bubbled up to the method signature
unsafe { self.erase(NvmErase::Flash { address, blocks }) }
}
/// Erase the flash memory.
///
/// Failure modes regarding erasure of the main address space flash
/// area are mentioned in [`Self::erase_flash`] documentation
///
/// # Safety
///
/// Safety requirements regarding erasure of the main address space flash
/// area are mentioned in [`Self::erase_flash`] documentation
///
/// Safety requirements regarding userpage modifications are mentioned in
/// [`Self::modify_userpage`] documentation
#[inline]
unsafe fn erase(&mut self, op: NvmErase) -> Result<()> {
let (address, length, granularity) = match op {
NvmErase::Flash { address, blocks } => {
(address as u32, blocks, EraseGranularity::Block)
}
NvmErase::Userpage => (Self::USERPAGE_ADDR as u32, 1, EraseGranularity::Page),
};
// Align to block/page boundary
// While the NVM will accept any address in the block, we need to compute the
// aligned address to check for boot protection.
let flash_address = address - address % granularity.size();
let range_to_erase = flash_address..(flash_address + length * granularity.size());
match op {
NvmErase::Flash { .. } => {
if self.contains_non_flash_memory_area(&range_to_erase) {
return Err(Error::NonFlash);
} else if self.contains_bootprotected(&range_to_erase) {
return Err(Error::Protected);
} else if self.contains_smart_eeprom(&range_to_erase) {
return Err(Error::SmartEepromArea);
}
}
NvmErase::Userpage => {
// Nothing to check
}
}
for address in range_to_erase.step_by(granularity.size() as usize) {
// Set target address to current block/page offset
self.set_address(address);
// Erase block/page, wait for completion
self.command_sync(granularity.command())?
}
Ok(())
}
#[inline]
fn contains_bootprotected(&self, input: &Range<u32>) -> bool {
// Calculate size that is protected for bootloader
// * 15 = no bootprotection, default value
// * 0 = max bootprotection, 15 * 8Kibyte = 120KiB
// * (15 - bootprot) * 8KiB = protected size
let bootprot = self.nvm.status().read().bootprot().bits();
let bp_space = 8 * 1024 * (15 - bootprot) as u32;
let boot = &(Bank::Active.address()..(Bank::Active.address() + bp_space));
self.is_boot_protected() && range_overlap(input, boot)
}
#[inline]
fn contains_smart_eeprom(&self, input: &Range<u32>) -> bool {
let smart_eeprom_allocated_blocks = self.nvm.seestat().read().sblk().bits() as u32;
let smart_eeprom_end = Bank::Inactive.address() + Bank::Inactive.length();
let smart_eeprom_start = smart_eeprom_end - smart_eeprom_allocated_blocks * BLOCKSIZE;
let smart_eeprom = &(smart_eeprom_start..smart_eeprom_end);
range_overlap(input, smart_eeprom)
}
#[inline]
fn contains_non_flash_memory_area(&self, input: &Range<u32>) -> bool {
input.end > retrieve_flash_size()
}
/// Retrieve SmartEEPROM
#[inline]
pub fn smart_eeprom(&mut self) -> smart_eeprom::Result<'_> {
smart_eeprom::SmartEepromMode::retrieve(self)
}
}
/// The outcome of [`Nvm::modify_userpage`]
#[derive(Copy, Clone, Debug)]
pub enum UserpageStatus {
/// Userpage has been updated
Updated,
/// Update has been skipped; expected value is already present.
Skipped,
}
enum NvmWrite<'a> {
/// Writes to the flash memory within the main address space
MainAddressSpace {
destination: *mut u32,
source: *const u32,
words: u32,
write_granularity: WriteGranularity,
},
/// Writes the userpage to the corresponding flash memory
Userpage(&'a Userpage),
}
enum NvmErase {
Flash { address: *mut u32, blocks: u32 },
Userpage,
}
/// Data erased per command
#[derive(Copy, Clone, Debug)]
enum EraseGranularity {
/// One block. This erase type is supported by main memory
Block,
/// One page. This erase type is supported for the AUX memory
Page,
}
/// Data written per command
#[derive(Copy, Clone, Debug)]
pub enum WriteGranularity {
/// Four words (16 bytes). Expected for user page writes
QuadWord,
/// One page (512 bytes)
Page,
}
impl EraseGranularity {
#[inline]
fn command(&self) -> Cmdselect {
match self {
Self::Block => Cmdselect::Eb,
Self::Page => Cmdselect::Ep,
}
}
#[inline]
fn size(&self) -> u32 {
match self {
Self::Block => BLOCKSIZE,
Self::Page => PAGESIZE,
}
}
}
impl WriteGranularity {
#[inline]
fn command(&self) -> Cmdselect {
match self {
Self::QuadWord => Cmdselect::Wqw,
Self::Page => Cmdselect::Wp,
}
}
#[inline]
fn size(&self) -> u32 {
match self {
Self::QuadWord => QUADWORDSIZE,
Self::Page => PAGESIZE,
}
}
}
fn range_overlap(a: &Range<u32>, b: &Range<u32>) -> bool {
a.start < b.end && b.start < a.end
}
/// Type alias to the userpage with a concrete underlying storage type
pub type Userpage = RawUserpage<[u8; 512]>;
bitfield! {
/// Raw userpage POD struct that exposes bitfields via methods
#[derive(Clone, PartialEq, Eq)]
pub struct RawUserpage([u8]);
impl Debug;
u8;
/// Access the `bod33_disable` field
pub bod33_disable, set_bod33_disable: 0;
/// Access the `bod33_level` field
pub bod33_level, set_bod33_level: 8, 1;
/// Access the `bod33_action` field
pub bod33_action, set_bod33_action: 10, 9;
/// Access the `bod33_hysteresis` field
pub bod33_hysteresis, set_bod33_hysteresis: 14, 11;
/// Access the `bod12_calibration_parameters` field
pub u16, bod12_calibration_parameters, set_bod12_calibration_parameters: 25, 15;
/// Access the `nvm_bootloader_size` field
pub nvm_bootloader_size, set_nvm_bootloader_size: 29, 26;
/// Access the `reserved_0` field
pub reserved_0, set_reserved_0: 31, 30;
/// Access the `see_sblk` field
pub see_sblk, set_see_sblk: 35, 32;
/// Access the `see_psz` field
pub see_psz, set_see_psz: 38, 36;
/// Access the `ram_ecc_disable` field
pub ram_ecc_disable, set_ram_ecc_disable: 39;
/// Access the `reserved_1` field
pub reserved_1, set_reserved_1: 47, 40;
/// Access the `wdt_enable` field
pub wdt_enable, set_wdt_enable: 48;
/// Access the `wdt_always_on` field
pub wdt_always_on, set_wdt_always_on: 49;
/// Access the `wdt_period` field
pub wdt_period, set_wdt_period: 53, 50;
/// Access the `wdt_window` field
pub wdt_window, set_wdt_window: 57, 54;
/// Access the `wdt_ewoffset` field
pub wdt_ewoffset, set_wdt_ewoffset: 61, 58;
/// Access the `wdt_wen` field
pub wdt_wen, set_wdt_wen: 62;
/// Access the `reserved_2` field
pub reserved_2, set_reserved_2: 63;
/// Access the `nvm_locks` field
pub u32, nvm_locks, set_nvm_locks: 95, 64;
/// Access the `userpage_0` field
pub u32, userpage_0, set_userpage_0: 127, 96;
/// Access the `reserved_3` field
pub u32, reserved_3, set_reserved_3: 159, 128;
}
impl<T: AsRef<[u8]>> RawUserpage<T> {
/// Access the general purpose user-writable section of the userpage via
/// slice
#[inline]
pub fn userpage1_as_slice(&self) -> &[u8] {
// `userpage1` starts on 160th bit (20th byte) and continues till the end of
// the userpage
&self.0.as_ref()[20..512]
}
}
impl<T: AsMut<[u8]>> RawUserpage<T> {
/// Access the general purpose user-writable section of the userpage via
/// mutable slice
#[inline]
pub fn userpage1_as_slice_mut(&mut self) -> &mut [u8] {
// `userpage1` starts on 160th bit (20th byte) and continues till the end of
// the userpage
&mut self.0.as_mut()[20..512]
}
}
bitfield! {
#[derive(Copy, Clone, Default)]
/// POD-style struct representing NVM calibration area
pub struct CalibrationArea(u64);
impl Debug;
u32;
/// Access the `ac_bias` field. Setter is not provided.
pub ac_bias, _: 1, 0;
/// Access the `adc0_biascomp` field. Setter is not provided.
pub adc0_biascomp, _: 4, 2;
/// Access the `adc0_biasrefbuf` field. Setter is not provided.
pub adc0_biasrefbuf, _: 7, 5;
/// Access the `adc0_biasr2r` field. Setter is not provided.
pub adc0_biasr2r, _: 10, 8;
/// Access the `adc1_biascomp` field. Setter is not provided.
pub adc1_biascomp, _: 18, 16;
/// Access the `adc1_biasrefbuf` field. Setter is not provided.
pub adc1_biasrefbuf, _: 21, 19;
/// Access the `adc1_biasr2r` field. Setter is not provided.
pub adc1_biasr2r, _: 24, 22;
/// Access the `usb_transn` field. Setter is not provided.
pub usb_transn, _: 36, 32;
/// Access the `usb_transp` field. Setter is not provided.
pub usb_transp, _: 41, 37;
/// Access the `usb_trim` field. Setter is not provided.
pub usb_trim, _: 44, 42;
}
bitfield! {
#[derive(Copy, Clone, Default)]
/// POD-style struct representing NVM calibration area for
/// temperature calibration
pub struct TemperaturesCalibrationArea(u128);
impl Debug;
u32;
/// Access the `tli` field. Setter is not provided.
pub tli, _: 7, 0;
/// Access the `tld` field. Setter is not provided.
pub tld, _: 11, 8;
/// Access the `thi` field. Setter is not provided.
pub thi, _: 19, 12;
/// Access the `thd` field. Setter is not provided.
pub thd, _: 23, 20;
/// Access the `vpl` field. Setter is not provided.
pub vpl, _: 51, 40;
/// Access the `vph` field. Setter is not provided.
pub vph, _: 63, 52;
/// Access the `vcl` field. Setter is not provided.
pub vcl, _: 75, 63;
/// Access the `vch` field. Setter is not provided.
pub vch, _: 87, 76;
}