atsamd_hal/peripherals/
eic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
//! # External Interrupt Controller
//!
//! This module provides typesafe APIs for interacting with the EIC peripheral,
//! which is used to generate interrupts based on the state of a GPIO.
//!
//! Each chip has a number of EXTINT channels:
//!
//! * SAMD11: 8 channels
//! * SAMD21/SAMx5x: 16 channels
//!
//! Each channel can operate independently, and sense state changes for a single
//! GPIO pin at a time. Refer to the datasheet for GPIO pin/EXTINT channel
//! compatibility. In this module, an [`ExtInt`] represents an EXTINT channel
//! which is tied to a GPIO [`Pin`], and is capable of sensing state changes.
//!
//! ## Steps to create an [`ExtInt`]
//!
//! 1. Start by creating an [`Eic`] struct, by calling [`Eic::new`]. This
//!    initializes the EIC peripheral and sets up the correct clocking.
//!
//! 1. Turn the [`Eic`] into a tuple of [`Channel`]s by calling [`Eic::split`].
//!    Each channel represents a single EXTINT channel.
//!
//! 1. Assign a pin to a channel by calling [`Channel::with_pin`]. This returns
//!    a fully configured and ready to use [`ExtInt`]. A [`Pin`] can also be
//!    directly converted into an [`ExtInt`] by calling one of the methods
//!    provided by the [`EicPin`] trait.
//!
//! ### Example setup
//!
//! ```no_run
//! let eic_clock = clocks.eic(&gclk0).unwrap();
//! // Initialize the EIC peripheral
//! let eic = Eic::new(&mut peripherals.pm, eic_clock, peripherals.eic);
//! // Split into channels
//! let eic_channels = eic.split();
//!
//! // Take the pin that we want to use
//! let button: Pin<_, PullUpInterrupt> = pins.d10.into();
//!
//! // Turn the EXTINT[2] channel into an ExtInt struct
//! let mut extint = eic_channels.2.with_pin(button);
//! ```
//!
//! ## `async` operation <span class="stab portability" title="Available on crate feature `async` only"><code>async</code></span>
//!
//! [`ExtInt`]s can be used for async operations. Configuring the [`Eic`] in
//! async mode is relatively simple:
//!
//! * Bind the corresponding `EIC` interrupt source to the SPI
//!   [`InterruptHandler`] (refer to the module-level
//!   [`async_hal`](crate::async_hal) documentation for more information).
//!
//! * SAMD11/SAMD21: Turn an [`Eic`] into an async-enabled [`Eic`] by calling
//!   [`Eic::into_future`]. Since there is only a single interrupt handler for
//!   the EIC peripheral, all EXTINT channels must be turned into async channels
//!   at once.
//! * SAMx5x: Turn an individuel [`ExtInt`] into an async-enabled [`ExtInt`] by
//!   calling [`ExtInt::into_future`]. Each channel has a dedicated interrupt
//!   source, therefore you must individually choose which channels to turn into
//!   async channels.
//! * Use the provided [`wait`](ExtInt::wait) method. async-enabled [`ExtInt`]s
//!   also implement [`embedded_hal_async::digital::Wait`].

use core::marker::PhantomData;

use atsamd_hal_macros::{hal_cfg, hal_module};
use seq_macro::seq;

use crate::{
    clock::EicClock,
    gpio::{AnyPin, Pin},
    pac,
    typelevel::{NoneT, Sealed},
};

#[hal_module(
    any("eic-d11", "eic-d21") => "eic/d11/mod.rs",
    "eic-d5x" => "eic/d5x/mod.rs",
)]
mod impls {}
#[cfg(feature = "async")]
pub use impls::async_api::*;

pub type Sense = pac::eic::config::Sense0select;

/// Trait representing an EXTINT channel ID.
pub trait ChId {
    const ID: usize;
}

/// Marker type that represents an EXTINT channel capable of doing async
/// operations.
#[cfg(feature = "async")]
pub enum EicFuture {}

/// Trait representing a GPIO pin which can be used as an external interrupt.
pub trait EicPin: AnyPin + Sealed {
    type Floating;
    type PullUp;
    type PullDown;

    type ChId: ChId;

    #[hal_cfg("eic-d5x")]
    #[cfg(feature = "async")]
    type InterruptSource: crate::async_hal::interrupts::InterruptSource;

    /// Configure a pin as a floating external interrupt
    fn into_floating_ei(self, chan: Channel<Self::ChId>) -> Self::Floating;

    /// Configure a pin as pulled-up external interrupt
    fn into_pull_up_ei(self, chan: Channel<Self::ChId>) -> Self::PullUp;

    /// Configure a pin as pulled-down external interrupt
    fn into_pull_down_ei(self, chan: Channel<Self::ChId>) -> Self::PullDown;
}

/// A numbered external interrupt, which can be used to sense state changes on
/// its pin.
pub struct ExtInt<P, Id, F = NoneT>
where
    P: EicPin,
    Id: ChId,
{
    chan: Channel<Id, F>,
    pin: Pin<P::Id, P::Mode>,
}

impl<P, Id, F> ExtInt<P, Id, F>
where
    P: EicPin,
    Id: ChId,
{
    /// Release the underlying resources: [`Pin`] and [`Channel`].
    pub fn free(self) -> (Pin<P::Id, P::Mode>, Channel<Id, F>) {
        (self.pin, self.chan)
    }

    /// Construct pad from the appropriate pin in any mode.
    /// You may find it more convenient to use the `into_pad` trait
    /// and avoid referencing the pad type.
    fn new(pin: P, chan: Channel<Id, F>) -> Self {
        ExtInt {
            pin: pin.into(),
            chan,
        }
    }
}

/// EIC channel.
///
/// Use this struct to create an [`ExtInt`](pins::ExtInt) by calling
/// [`with_pin`](Self::with_pin).
pub struct Channel<Id: ChId, F = NoneT> {
    eic: core::mem::ManuallyDrop<pac::Eic>,
    _id: PhantomData<Id>,
    _irqs: PhantomData<F>,
}

impl<Id: ChId, F> Channel<Id, F> {
    /// Assign a pin to this [`Channel`], and turn it into an [`ExtInt`], which
    /// is capable of sensing state changes on the pin.
    pub fn with_pin<P: EicPin<ChId = Id>>(self, pin: P) -> ExtInt<P, Id, F> {
        ExtInt::new(pin, self)
    }

    fn new(eic: pac::Eic) -> Self {
        Self {
            eic: core::mem::ManuallyDrop::new(eic),
            _id: PhantomData,
            _irqs: PhantomData,
        }
    }

    #[hal_cfg("eic-d5x")]
    #[cfg(feature = "async")]
    fn change_mode<N>(self) -> Channel<Id, N> {
        Channel {
            eic: self.eic,
            _id: self._id,
            _irqs: PhantomData,
        }
    }
}

/// External Interrupt Controller.
///
/// Use [`split`](Self::split) to split the struct into individual channels,
/// which can then be used to create [`ExtInt`]s, by calling
/// [`Channel::with_pin`].
pub struct Eic<I = NoneT> {
    eic: pac::Eic,
    _irqs: PhantomData<I>,
}

impl Eic {
    /// Create a new [`Eic`] and initialize it.
    #[hal_cfg(any("eic-d11", "eic-d21"))]
    pub fn new(pm: &mut pac::Pm, _clock: EicClock, eic: pac::Eic) -> Self {
        pm.apbamask().modify(|_, w| w.eic_().set_bit());

        // Reset the EIC
        eic.ctrl().modify(|_, w| w.swrst().set_bit());
        while eic.ctrl().read().swrst().bit_is_set() {
            core::hint::spin_loop();
        }

        eic.ctrl().modify(|_, w| w.enable().set_bit());
        while eic.status().read().syncbusy().bit_is_set() {
            cortex_m::asm::nop();
        }
        Self {
            eic,
            _irqs: PhantomData,
        }
    }

    /// Create and initialize a new [`Eic`], and wire it up to the
    /// ultra-low-power 32kHz clock source.
    #[hal_cfg("eic-d5x")]
    pub fn new(mclk: &mut pac::Mclk, _clock: EicClock, eic: pac::Eic) -> Self {
        mclk.apbamask().modify(|_, w| w.eic_().set_bit());

        let mut eic = Self {
            eic,
            _irqs: PhantomData,
        };

        // Reset the EIC
        eic.swreset();

        // Use the low-power 32k clock and enable.
        eic.eic.ctrla().modify(|_, w| {
            w.cksel().set_bit();
            w.enable().set_bit()
        });

        while eic.eic.syncbusy().read().enable().bit_is_set() {
            core::hint::spin_loop();
        }

        eic
    }

    /// Release the EIC and return the register block.
    ///
    /// **Note**: The [`Channels`] struct is consumed by this method. This means
    /// that any [`Channel`] obtained by [`split`](Eic::split) must be
    /// moved back into the [`Channels`] struct before being able to pass it
    /// into [`free`](Eic::free).
    pub fn free(mut self, _channels: Channels) -> pac::Eic {
        self.swreset();

        self.eic
    }
}

impl<F> Eic<F> {
    /// Reset the EIC
    #[atsamd_hal_macros::hal_macro_helper]
    fn swreset(&mut self) {
        #[hal_cfg(any("eic-d11", "eic-d21"))]
        let ctrl = self.eic.ctrl();

        #[hal_cfg("eic-d5x")]
        let ctrl = self.eic.ctrla();

        ctrl.modify(|_, w| w.swrst().set_bit());
        while ctrl.read().swrst().bit_is_set() {
            core::hint::spin_loop();
        }
    }
}

#[cfg(feature = "async")]
impl Eic<EicFuture> {
    /// Release the EIC and return the register block.
    ///
    /// **Note**: The [`Channels`] struct is consumed by this method. This means
    /// that any [`Channel`] obtained by [`split`](Eic::split) must be
    /// moved back into the [`Channels`] struct before being able to pass it
    /// into [`free`](Eic::free).
    pub fn free(mut self, _channels: FutureChannels) -> pac::Eic {
        self.swreset();
        self.eic
    }
}

#[hal_cfg("eic-d11")]
macro_rules! with_num_channels {
    ($some_macro:ident) => {
        $some_macro! {8}
    };
}

#[hal_cfg(any("eic-d5x", "eic-d21"))]
macro_rules! with_num_channels {
    ($some_macro:ident) => {
        $some_macro! {16}
    };
}

macro_rules! get {
    ($literal:literal) => {
        $literal
    };
}

/// The number of EXTINT channels on this chip.
pub const NUM_CHANNELS: usize = with_num_channels!(get);

macro_rules! define_channels_struct {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            #(
                /// Type alias for a channel number
                pub enum Ch~N {}

                impl ChId for Ch~N {
                    const ID: usize = N;
                }
            )*

            /// Struct generating individual handles to each EXTINT channel
            pub struct Channels(
                #(
                    pub Channel<Ch~N>,
                )*
            );
        });
    };
}

with_num_channels!(define_channels_struct);

#[cfg(feature = "async")]
macro_rules! define_channels_struct_future {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            /// Struct generating individual handles to each EXTINT channel for `async` operation
            pub struct FutureChannels(
                #(
                    pub Channel<Ch~N, EicFuture>,
                )*
            );
        });
    };
}

#[cfg(feature = "async")]
with_num_channels!(define_channels_struct_future);

macro_rules! define_split {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            /// Split the EIC into individual channels.
            #[inline]
            pub fn split(self) -> Channels {
                Channels(
                    #(
                       unsafe { Channel::new(core::ptr::read(&self.eic as *const _)) },
                    )*
                )
            }

        });
    };
}

impl Eic {
    with_num_channels!(define_split);
}

#[cfg(feature = "async")]
macro_rules! define_split_future {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            /// Split the EIC into individual channels
            #[inline]
            pub fn split(self) -> FutureChannels {
                FutureChannels(
                    #(
                        unsafe { Channel::new(core::ptr::read(&self.eic as *const _)) },
                    )*
                )
            }
        });
    };
}

#[cfg(feature = "async")]
impl Eic<EicFuture> {
    with_num_channels!(define_split_future);
}