atsamd_hal/sercom/uart/pads_thumbv7em.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
//! UART pad definitions for thumbv7em targets
use super::{AnyConfig, Capability, CharSize, Config, Duplex, Rx, Tx};
use crate::{
gpio::AnyPin,
sercom::*,
typelevel::{NoneT, Sealed},
};
use core::marker::PhantomData;
//=============================================================================
// RxpoTxpo
//=============================================================================
/// Configure the `RXPO` and `TXPO` fields based on a set of [`Pads`]
///
/// According to the datasheet, the `RXPO` and `TXPO` values specify which
/// SERCOM pads are used for various functions. Moreover, depending on which
/// pads are actually in use, only certain combinations of these values make
/// sense and are valid.
///
/// This trait is implemented for valid, four-tuple combinations of
/// [`OptionalPadNum`]s. Those implementations are then lifted to the
/// corresponding [`Pads`] types.
///
/// To satisfy this trait, the combination of [`OptionalPadNum`]s must specify
/// [`PadNum`] for at least one of `RX` and `TX`. Furthermore, no
/// two [`PadNum`]s can conflict.
pub trait RxpoTxpo {
/// `RXPO` field value
const RXPO: u8;
/// `RXPO` field value
const TXPO: u8;
}
/// Lift the implementations of [`RxpoTxpo`] from four-tuples of
/// [`OptionalPadNum`]s to the corresponding [`Pads`] types.
impl<S, I, RX, TX, RTS, CTS> RxpoTxpo for Pads<S, I, RX, TX, RTS, CTS>
where
S: Sercom,
I: IoSet,
RX: OptionalPad,
TX: OptionalPad,
RTS: OptionalPad,
CTS: OptionalPad,
(RX::PadNum, TX::PadNum, RTS::PadNum, CTS::PadNum): RxpoTxpo,
{
const RXPO: u8 = <(RX::PadNum, TX::PadNum, RTS::PadNum, CTS::PadNum)>::RXPO;
const TXPO: u8 = <(RX::PadNum, TX::PadNum, RTS::PadNum, CTS::PadNum)>::TXPO;
}
//=============================================================================
// Implement RxpoTxpo
//=============================================================================
/// Filter [`PadNum`] permutations and implement [`RxpoTxpo`]
macro_rules! impl_rxpotxpo {
// This is the entry pattern. Start by checking RTS and CTS.
($RX:ident, $TX:ident, $RTS:ident, $CTS:ident) => { impl_rxpotxpo!(@check_rts_cts, $RX, $TX, $RTS, $CTS); };
// Check whether RTS and CTS form a valid pair.
// They both must be the correct pad or absent.
(@check_rts_cts, $RX:ident, $TX:ident, NoneT, NoneT) => { impl_rxpotxpo!(@rxpo, $RX, $TX, NoneT, NoneT); };
(@check_rts_cts, $RX:ident, $TX:ident, Pad2, NoneT) => { impl_rxpotxpo!(@rxpo, $RX, $TX, Pad2, NoneT); };
(@check_rts_cts, $RX:ident, $TX:ident, NoneT, Pad3) => { impl_rxpotxpo!(@rxpo, $RX, $TX, NoneT, Pad3); };
(@check_rts_cts, $RX:ident, $TX:ident, Pad2, Pad3) => { impl_rxpotxpo!(@rxpo, $RX, $TX, Pad2, Pad3); };
// If RTS and CTS are not valid, fall through to this pattern.
(@check_rts_cts, $RX:ident, $TX:ident, $RTS:ident, $CTS:ident) => { };
// Assign RXPO based on RX.
// Our options are exhaustive, so no fall through pattern is needed.
(@rxpo, NoneT, $TX:ident, $RTS:ident, $CTS:ident) => { impl_rxpotxpo!(@txpo, NoneT, $TX, $RTS, $CTS, 0); };
(@rxpo, Pad0, $TX:ident, $RTS:ident, $CTS:ident) => { impl_rxpotxpo!(@txpo, Pad0, $TX, $RTS, $CTS, 0); };
(@rxpo, Pad1, $TX:ident, $RTS:ident, $CTS:ident) => { impl_rxpotxpo!(@txpo, Pad1, $TX, $RTS, $CTS, 1); };
(@rxpo, Pad2, $TX:ident, $RTS:ident, $CTS:ident) => { impl_rxpotxpo!(@txpo, Pad2, $TX, $RTS, $CTS, 2); };
(@rxpo, Pad3, $TX:ident, $RTS:ident, $CTS:ident) => { impl_rxpotxpo!(@txpo, Pad3, $TX, $RTS, $CTS, 3); };
// Assign TXPO based on TX, RTS and CTS
(@txpo, $RX:ident, NoneT, NoneT, NoneT, $RXPO:literal) => { impl_rxpotxpo!(@filter, $RX, NoneT, NoneT, NoneT, $RXPO, 0); };
(@txpo, $RX:ident, NoneT, Pad2, NoneT, $RXPO:literal) => { impl_rxpotxpo!(@filter, $RX, NoneT, Pad2, NoneT, $RXPO, 3); };
(@txpo, $RX:ident, NoneT, Pad2, Pad3, $RXPO:literal) => { impl_rxpotxpo!(@filter, $RX, NoneT, Pad2, Pad3, $RXPO, 2); };
(@txpo, $RX:ident, Pad0, NoneT, NoneT, $RXPO:literal) => { impl_rxpotxpo!(@filter, $RX, Pad0, NoneT, NoneT, $RXPO, 0); };
(@txpo, $RX:ident, Pad0, Pad2, NoneT, $RXPO:literal) => { impl_rxpotxpo!(@filter, $RX, Pad0, Pad2, NoneT, $RXPO, 3); };
(@txpo, $RX:ident, Pad0, Pad2, Pad3, $RXPO:literal) => { impl_rxpotxpo!(@filter, $RX, Pad0, Pad2, Pad3, $RXPO, 2); };
// If TX is not valid, fall through to this pattern.
(@txpo, $RX:ident, $TX:ident, $RTS:ident, $CTS:ident, $RXPO:literal) => { };
// Filter any remaining permutations that conflict.
(@filter, NoneT, NoneT, $RTS:ident, $CTS:ident, $RXPO:literal, $TXPO:literal) => { }; // RX and TX both NoneT
(@filter, Pad0, Pad0, $RTS:ident, $CTS:ident, $RXPO:literal, $TXPO:literal) => { }; // RX and TX both Pad0
(@filter, Pad2, $TX:ident, Pad2, $CTS:ident, $RXPO:literal, $TXPO:literal) => { }; // RX can't share a pad with RTS
(@filter, Pad3, $TX:ident, $RTS:ident, Pad3, $RXPO:literal, $TXPO:literal) => { }; // RX can't share a pad with CTS
(@filter, Pad1, $TX:ident, $RTS:ident, $CTS:ident, 1, 0) => { }; // RX can't be Pad1 if TXPO is 0 because of XCK conflict
(@filter, Pad1, $TX:ident, $RTS:ident, $CTS:ident, 1, 3) => { }; // RX can't be Pad1 if TXPO is 3 because of XCK conflict
// If there are no conflicts, fall through to this pattern
(@filter, $RX:ident, $TX:ident, $RTS:ident, $CTS:ident, $RXPO:literal, $TXPO:literal) => {
impl_rxpotxpo!(@implement, $RX, $TX, $RTS, $CTS, $RXPO, $TXPO);
};
// Implement RxpoTxpo
(@implement, $RX:ident, $TX:ident, $RTS:ident, $CTS:ident, $RXPO:literal, $TXPO:literal) => {
impl RxpoTxpo for ($RX, $TX, $RTS, $CTS) {
const RXPO: u8 = $RXPO;
const TXPO: u8 = $TXPO;
}
};
}
/// Try to implement [`RxpoTxpo`] on all possible 4-tuple permutations of
/// [`OptionalPadNum`]s.
///
/// The leading `()` token tree stores a growing permutation of [`PadNum`]s.
/// When it reaches four [`PadNum`]s, try to implement [`RxpoTxpo`].
///
/// The next `[]` token tree is a list of possible [`PadNum`]s to append to the
/// growing permutation. Loop through this list and append each option to the
/// permutation.
///
/// The final, optional `[]` token tree exists to temporarily store the entire
/// list before pushing it down for the next permutation element.
macro_rules! padnum_permutations {
// If we have built up four [`PadNum`]s, try to implement [`RxpoTxpo`].
// Ignore the remaining list of [`PadNum`]s.
(
( $RX:ident $TX:ident $RTS:ident $CTS:ident ) [ $( $Pads:ident )* ]
) => {
impl_rxpotxpo!($RX, $TX, $RTS, $CTS);
};
// If we only have one list of [`PadNum`]s, duplicate it, to save it for the
// next permutation element.
(
( $($Perm:ident)* ) [ $($Pads:ident)+ ]
) => {
padnum_permutations!( ( $($Perm)* ) [ $($Pads)+ ] [ $($Pads)+ ] );
};
(
( $($Perm:ident)* ) [ $Head:ident $($Tail:ident)* ] [ $($Pads:ident)+ ]
) => {
// Append the first [`PadNum`] from the list, then push down to the next
// permutation element.
padnum_permutations!( ( $($Perm)* $Head ) [ $($Pads)+ ] );
// Loop through the remaining [`PadNum`]s to do the same thing for each.
padnum_permutations!( ( $($Perm)* ) [ $($Tail)* ] [ $($Pads)+ ] );
};
// Once the list of [`PadNum`]s is empty, we're done with this element.
( ( $($Perm:ident)* ) [ ] [ $($Pads:ident)+ ] ) => { };
}
padnum_permutations!( () [NoneT Pad0 Pad1 Pad2 Pad3] );
//=============================================================================
// Pads
//=============================================================================
/// Container for a set of SERCOM [`Pad`]s
///
/// See the [module-level](crate::sercom::uart) documentation for more
/// details on specifying a `Pads` type and creating instances.
pub struct Pads<S, I, RX = NoneT, TX = NoneT, RTS = NoneT, CTS = NoneT>
where
S: Sercom,
I: IoSet,
RX: OptionalPad,
TX: OptionalPad,
RTS: OptionalPad,
CTS: OptionalPad,
{
sercom: PhantomData<S>,
ioset: PhantomData<I>,
receive: RX,
transmit: TX,
ready_to_send: RTS,
clear_to_send: CTS,
}
impl<S: Sercom, I: IoSet> Default for Pads<S, I> {
fn default() -> Self {
Self {
sercom: PhantomData,
ioset: PhantomData,
receive: NoneT,
transmit: NoneT,
ready_to_send: NoneT,
clear_to_send: NoneT,
}
}
}
impl<S, I, RX, TX, RTS, CTS> Pads<S, I, RX, TX, RTS, CTS>
where
S: Sercom,
I: IoSet,
RX: OptionalPad,
TX: OptionalPad,
RTS: OptionalPad,
CTS: OptionalPad,
{
/// Set the `RX` [`Pad`]
#[inline]
pub fn rx<Id>(self, pin: impl AnyPin<Id = Id>) -> Pads<S, I, Pad<S, Id>, TX, RTS, CTS>
where
Id: GetPad<S>,
Pad<S, Id>: InIoSet<I>,
{
Pads {
sercom: self.sercom,
ioset: self.ioset,
receive: pin.into().into_mode(),
transmit: self.transmit,
ready_to_send: self.ready_to_send,
clear_to_send: self.clear_to_send,
}
}
/// Set the `TX` [`Pad`]
#[inline]
pub fn tx<Id>(self, pin: impl AnyPin<Id = Id>) -> Pads<S, I, RX, Pad<S, Id>, RTS, CTS>
where
Id: GetPad<S>,
Pad<S, Id>: InIoSet<I>,
{
Pads {
sercom: self.sercom,
ioset: self.ioset,
receive: self.receive,
transmit: pin.into().into_mode(),
ready_to_send: self.ready_to_send,
clear_to_send: self.clear_to_send,
}
}
/// Set the `RTS` [`Pad`], which is always [`Pad2`]
#[inline]
pub fn rts<Id>(self, pin: impl AnyPin<Id = Id>) -> Pads<S, I, RX, TX, Pad<S, Id>, CTS>
where
Id: GetPad<S>,
Pad<S, Id>: InIoSet<I>,
{
Pads {
sercom: self.sercom,
ioset: self.ioset,
receive: self.receive,
transmit: self.transmit,
ready_to_send: pin.into().into_mode(),
clear_to_send: self.clear_to_send,
}
}
/// Set the `CTS` [`Pad`], which is always [`Pad3`]
#[inline]
pub fn cts<Id>(self, pin: impl AnyPin<Id = Id>) -> Pads<S, I, RX, TX, RTS, Pad<S, Id>>
where
Id: GetPad<S>,
Pad<S, Id>: InIoSet<I>,
{
Pads {
sercom: self.sercom,
ioset: self.ioset,
receive: self.receive,
transmit: self.transmit,
ready_to_send: self.ready_to_send,
clear_to_send: pin.into().into_mode(),
}
}
/// Consume the [`Pads`] and return each individual [`Pad`]
#[inline]
pub fn free(self) -> (RX, TX, RTS, CTS) {
(
self.receive,
self.transmit,
self.ready_to_send,
self.clear_to_send,
)
}
}
/// Define a set of [`Pads`] using [`PinId`]s instead of [`Pin`]s
///
/// In some cases, it is more convenient to specify a set of `Pads` using
/// `PinId`s rather than `Pin`s. This alias makes it easier to do so.
///
/// The first two type parameters are the [`Sercom`] and [`IoSet`], while the
/// remaining four are effectively [`OptionalPinId`]s representing the
/// corresponding type parameters of [`Pads`], i.e. `RX`, `TX`, `RTS` & `CTS`.
/// Each of the remaining type parameters defaults to [`NoneT`].
///
/// ```
/// use atsamd_hal::pac::Peripherals;
/// use atsamd_hal::gpio::{PA08, PA09, Pins};
/// use atsamd_hal::sercom::{Sercom0, uart};
/// use atsamd_hal::sercom::pad::IoSet1;
/// use atsamd_hal::typelevel::NoneT;
///
/// pub type Pads = uart::PadsFromIds<Sercom0, IoSet1, PA09T, PA08>;
///
/// pub fn create_pads() -> Pads {
/// let peripherals = Peripherals::take().unwrap();
/// let pins = Pins::new(peripherals.PORT);
/// uart::Pads::default().rx(pins.pa09).tx(pins.pa08)
/// }
/// ```
///
/// [`Pin`]: crate::gpio::Pin
/// [`PinId`]: crate::gpio::PinId
/// [`OptionalPinId`]: crate::gpio::OptionalPinId
pub type PadsFromIds<S, I, RX = NoneT, TX = NoneT, RTS = NoneT, CTS = NoneT> = Pads<
S,
I,
<RX as GetOptionalPad<S>>::Pad,
<TX as GetOptionalPad<S>>::Pad,
<RTS as GetOptionalPad<S>>::Pad,
<CTS as GetOptionalPad<S>>::Pad,
>;
//=============================================================================
// PadSet
//=============================================================================
/// Type-level function to recover the [`OptionalPad`] types from a generic set
/// of [`Pads`]
///
/// This trait is used as an interface between the [`Pads`] type and other
/// types in this module. It acts as a [type-level function], returning the
/// corresponding [`Sercom`], and [`OptionalPad`] types. It serves to
/// cut down on the total number of type parameters needed in the [`Config`]
/// struct. The [`Config`] struct doesn't need access to the [`Pad`]s directly.
/// Rather, it only needs to apply the [`SomePad`] trait bound when a `Pin` is
/// required. The [`PadSet`] trait allows each [`Config`] struct to store an
/// instance of [`Pads`] without itself being generic over all six type
/// parameters of the [`Pads`] type.
///
/// [`Pin`]: crate::gpio::Pin
/// [`Config`]: crate::sercom::uart::Config
/// [type-level function]: crate::typelevel#type-level-functions
pub trait PadSet: Sealed {
type Sercom: Sercom;
type IoSet: IoSet;
type Rx: OptionalPad;
type Tx: OptionalPad;
type Rts: OptionalPad;
type Cts: OptionalPad;
}
impl<S, I, RX, TX, RTS, CTS> Sealed for Pads<S, I, RX, TX, RTS, CTS>
where
S: Sercom,
I: IoSet,
RX: OptionalPad,
TX: OptionalPad,
RTS: OptionalPad,
CTS: OptionalPad,
{
}
impl<S, I, RX, TX, RTS, CTS> PadSet for Pads<S, I, RX, TX, RTS, CTS>
where
S: Sercom,
I: IoSet,
RX: OptionalPad,
TX: OptionalPad,
RTS: OptionalPad,
CTS: OptionalPad,
{
type Sercom = S;
type IoSet = I;
type Rx = RX;
type Tx = TX;
type Rts = RTS;
type Cts = CTS;
}
//=============================================================================
// ValidPads
//=============================================================================
/// Marker trait for valid sets of [`Pads`]
///
/// This trait labels sets of [`Pads`] that satisfy the [`RxpoTxpo`]
/// trait. It guarantees to the [`Config`] struct that this set of `Pads` can
/// be configured through those traits.
///
/// [`Config`]: crate::sercom::uart::Config
pub trait ValidPads: PadSet + RxpoTxpo {
type Capability: Capability;
}
impl<S, I, RX, RTS> ValidPads for Pads<S, I, RX, NoneT, RTS, NoneT>
where
S: Sercom,
I: IoSet,
RX: SomePad,
RTS: OptionalPad,
Self: PadSet + RxpoTxpo,
{
type Capability = Rx;
}
impl<S, I, TX, CTS> ValidPads for Pads<S, I, NoneT, TX, NoneT, CTS>
where
S: Sercom,
I: IoSet,
TX: SomePad,
CTS: OptionalPad,
Self: PadSet + RxpoTxpo,
{
type Capability = Tx;
}
impl<S, I, RX, TX, RTS, CTS> ValidPads for Pads<S, I, RX, TX, RTS, CTS>
where
S: Sercom,
I: IoSet,
RX: SomePad,
TX: SomePad,
RTS: OptionalPad,
CTS: OptionalPad,
Self: PadSet + RxpoTxpo,
{
type Capability = Duplex;
}
//=============================================================================
// ValidConfig
//=============================================================================
/// Marker trait for valid UART [`Config`]urations
///
/// A functional UART peripheral must have, at a minimum either a Rx or a Tx
/// [`Pad`].
pub trait ValidConfig: AnyConfig {}
impl<P: ValidPads, C: CharSize> ValidConfig for Config<P, C> {}