atsamd_hal/async_hal/interrupts.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
//! # Async interrupts
//!
//! This module provides APIs specific to working with interrupts in an async
//! peripheral context.
//!
//! Asynchronous programming relies on tasks that can be paused and resumed
//! without blocking the entire program. When an async task is waiting for a
//! particular event, such as data from a peripheral, it enters a suspended
//! state. It is crucial that the task is properly woken up when the expected
//! event occurs to resume its execution.
//!
//! By having peripherals take interrupts, they can signal the occurrence of
//! relevant events, effectively waking up the associated async tasks. This
//! ensures that the async runtime can schedule and resume tasks in a timely
//! manner, providing the responsiveness required in embedded systems.
//!
//! ## Typelevel and enum-level interrupts
//!
//! There are two main ways of representing interrupts in the HAL: either by
//! using [`pac::Interrupt`], where each interrupt is represented as an enum
//! variant, or by using the typelevel interrupts defined in this module. Each
//! interrupt source *that is usable with async peripherals* is declared as a
//! struct with the same name of the corresponsing [`pac::Interrupt`] variant.
//! Therefore, two distinct traits are needed to perform basic tasks on
//! interrupt types:
//!
//! * Use [`Interrupt`] when dealing with the typelevel interrupt types defined
//! in this module;
//! * Use [`InterruptExt`] when dealing with enum-level interrupt types defined
//! in [`pac`].
//!
//! [`pac::Interrupt`]: crate::pac::Interrupt
//! [`Interrupt`]: crate::async_hal::interrupts::Interrupt
//! [`InterruptExt`]: crate::async_hal::interrupts::InterruptExt
//! [`pac`]: crate::pac
pub use crate::interrupt::*;
use crate::typelevel::Sealed;
use atsamd_hal_macros::hal_cfg;
/// Marker trait indicating that an interrupt source has one binding and
/// one handler.
///
/// May not be implemented outside of this HAL.
pub trait SingleInterruptSource: Sealed {}
/// Marker trait indicating that an interrupt source has multiple bindings and
/// handlers.
///
/// May not be implemented outside of this HAL.
pub trait MultipleInterruptSources: Sealed {}
macro_rules! declare_interrupts {
($($(#[$cfg:meta])* $irqs:ident),* $(,)?) => {
$(
$(#[$cfg])*
#[allow(non_camel_case_types)]
#[doc=stringify!($irqs)]
#[doc=" typelevel interrupt."]
pub enum $irqs {}
$(#[$cfg])*
impl $crate::typelevel::Sealed for $irqs{}
$(#[$cfg])*
impl $crate::async_hal::interrupts::Interrupt for $irqs {
const IRQ: crate::pac::Interrupt = crate::pac::Interrupt::$irqs;
}
$(#[$cfg])*
impl $crate::async_hal::interrupts::SingleInterruptSource for $irqs {}
)*
}
}
/// Useful when we need to bind multiple interrupt sources to the same handler.
/// Calling the `InterruptSource` methods on the created struct will act on all
/// interrupt sources at once.
// Lint allowed because the macro is unused for thumbv6 devices.
#[allow(unused_macros)]
macro_rules! declare_multiple_interrupts {
($(#[$cfg:meta])* $name:ident: [ $($irq:ident),+ $(,)? ]) => {
::paste::paste! {
$(#[$cfg])*
pub enum $name {}
$(#[$cfg])*
impl $crate::typelevel::Sealed for $name {}
$(#[$cfg])*
impl $crate::async_hal::interrupts::InterruptSource for $name {
unsafe fn enable() {
$($crate::pac::Interrupt::$irq.enable();)+
}
fn disable() {
$($crate::pac::Interrupt::$irq.disable();)+
}
fn unpend() {
$($crate::pac::Interrupt::$irq.unpend();)+
}
fn set_priority(prio: $crate::async_hal::interrupts::Priority){
$($crate::pac::Interrupt::$irq.set_priority(prio);)+
}
}
$(#[$cfg])*
impl $crate::async_hal::interrupts::MultipleInterruptSources for $name {}
}
};
}
// ---------- DMAC Interrupts ---------- //
#[cfg(feature = "dma")]
#[hal_cfg("dmac-d5x")]
declare_multiple_interrupts!(DMAC: [DMAC_0, DMAC_1, DMAC_2, DMAC_OTHER]);
#[cfg(feature = "dma")]
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
declare_interrupts!(DMAC);
// ---------- SERCOM Interrupts ---------- //
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
declare_interrupts!(SERCOM0);
#[hal_cfg(any("sercom1-d11", "sercom1-d21"))]
declare_interrupts!(SERCOM1);
#[hal_cfg(any("sercom2-d11", "sercom2-d21"))]
declare_interrupts!(SERCOM2);
#[hal_cfg("sercom3-d21")]
declare_interrupts!(SERCOM3);
#[hal_cfg("sercom4-d21")]
declare_interrupts!(SERCOM4);
#[hal_cfg("sercom5-d21")]
declare_interrupts!(SERCOM5);
#[hal_cfg("sercom0-d5x")]
declare_multiple_interrupts!(SERCOM0: [SERCOM0_0, SERCOM0_1, SERCOM0_2, SERCOM0_OTHER ]);
#[hal_cfg("sercom1-d5x")]
declare_multiple_interrupts!(SERCOM1: [SERCOM1_0, SERCOM1_1, SERCOM1_2, SERCOM1_OTHER ]);
#[hal_cfg("sercom2-d5x")]
declare_multiple_interrupts!(SERCOM2: [SERCOM0_2, SERCOM2_1, SERCOM2_2, SERCOM2_OTHER ]);
#[hal_cfg("sercom3-d5x")]
declare_multiple_interrupts!(SERCOM3: [SERCOM3_0, SERCOM3_1, SERCOM3_2, SERCOM3_OTHER ]);
#[hal_cfg("sercom4-d5x")]
declare_multiple_interrupts!(SERCOM4: [SERCOM4_0, SERCOM4_1, SERCOM4_2, SERCOM4_OTHER ]);
#[hal_cfg("sercom5-d5x")]
declare_multiple_interrupts!(SERCOM5: [SERCOM5_0, SERCOM5_1, SERCOM5_2, SERCOM5_OTHER ]);
#[hal_cfg("sercom6-d5x")]
declare_multiple_interrupts!(SERCOM6: [SERCOM6_0, SERCOM6_1, SERCOM6_2, SERCOM6_OTHER ]);
#[hal_cfg("sercom7-d5x")]
declare_multiple_interrupts!(SERCOM7: [SERCOM7_0, SERCOM7_1, SERCOM7_2, SERCOM7_OTHER ]);
// ---------- TC Interrupts ---------- //
#[hal_cfg("tc0")]
declare_interrupts!(TC0);
#[hal_cfg("tc1")]
declare_interrupts!(TC1);
#[hal_cfg("tc2")]
declare_interrupts!(TC2);
#[hal_cfg("tc3")]
declare_interrupts!(TC3);
#[hal_cfg("tc4")]
declare_interrupts!(TC4);
#[hal_cfg("tc5")]
declare_interrupts!(TC5);
// ---------- EIC Interrupt ---------- //
#[hal_cfg(any("eic-d11", "eic-d21"))]
declare_interrupts!(EIC);
#[hal_cfg("eic-d5x")]
seq_macro::seq!(N in 0..= 15 {
paste::paste! {
declare_interrupts! {
EIC_EXTINT_~N
}
}
});
/// An interrupt source that may have one or many interrupt bindings.
///
/// This trait may implemented directly when multiple interrupt sources are
/// needed to operate a single peripheral (eg, SERCOM and DMAC for thumbv7
/// devices). If using one interrupt source per peripheral,
/// implement [`Interrupt`] instead. When implemented on a type that handles
/// multiple interrupt sources, the methods will act on all interrupt sources at
/// once.
///
/// May not be implemented outside of this HAL.
pub trait InterruptSource: crate::typelevel::Sealed {
/// Enable the interrupt.
///
/// # Safety
///
/// Do not enable any interrupt inside a critical section.
unsafe fn enable();
/// Disable the interrupt.
fn disable();
/// Unset interrupt pending.
fn unpend();
/// Set the interrupt priority.
fn set_priority(prio: Priority);
}
impl<T: Interrupt> InterruptSource for T {
unsafe fn enable() {
Self::enable();
}
fn disable() {
Self::disable();
}
fn unpend() {
Self::unpend();
}
fn set_priority(prio: Priority) {
Self::set_priority(prio);
}
}
/// Type-level interrupt.
///
/// This trait is implemented for all typelevel single interrupt types defined
/// in this module. May not be implemented outside of this HAL.
pub trait Interrupt: crate::typelevel::Sealed {
/// Interrupt enum variant.
///
/// This allows going from typelevel interrupts (one type per interrupt,
/// defined in [`this module`](self)) to non-typelevel interrupts (a
/// single [`Interrupt`](crate::pac::Interrupt) enum type, with one
/// variant per interrupt).
const IRQ: crate::pac::Interrupt;
/// Enable the interrupt.
///
/// # Safety
///
/// Do not enable any interrupt inside a critical section.
#[inline]
unsafe fn enable() {
Self::IRQ.enable()
}
/// Disable the interrupt.
#[inline]
fn disable() {
Self::IRQ.disable()
}
/// Check if interrupt is enabled.
#[inline]
fn is_enabled() -> bool {
Self::IRQ.is_enabled()
}
/// Check if interrupt is pending.
#[inline]
fn is_pending() -> bool {
Self::IRQ.is_pending()
}
/// Set interrupt pending.
#[inline]
fn pend() {
Self::IRQ.pend()
}
/// Unset interrupt pending.
#[inline]
fn unpend() {
Self::IRQ.unpend()
}
/// Get the priority of the interrupt.
#[inline]
fn get_priority() -> Priority {
Self::IRQ.get_priority()
}
/// Set the interrupt priority.
#[inline]
fn set_priority(prio: Priority) {
Self::IRQ.set_priority(prio)
}
/// Set the interrupt priority with an already-acquired critical section.
///
/// Equivalent to [`set_priority`](Self::set_priority), except you pass a
/// [`CriticalSection`] to prove you've already acquired a critical
/// section. This prevents acquiring another one, which saves code size.
#[inline]
fn set_priority_with_cs(cs: critical_section::CriticalSection, prio: Priority) {
Self::IRQ.set_priority_with_cs(cs, prio)
}
}
/// Interrupt handler.
///
/// Drivers that need to handle interrupts implement this trait.
/// The user must ensure `on_interrupt()` is called every time the interrupt
/// fires. Drivers must use use [`Binding`] to assert at compile time that the
/// user has done so.
pub trait Handler<I: InterruptSource>: Sealed {
/// Interrupt handler function.
///
/// Must be called every time the `I` interrupt fires, synchronously from
/// the interrupt handler context.
///
/// # Safety
///
/// This function must ONLY be called from the interrupt handler for `I`.
unsafe fn on_interrupt();
}
/// Compile-time assertion that an interrupt has been bound to a handler.
///
/// For the vast majority of cases, you should use the `bind_interrupts!`
/// macro instead of writing `unsafe impl`s of this trait.
///
/// # Safety
///
/// By implementing this trait, you are asserting that you have arranged for
/// `H::on_interrupt()` to be called every time the `I` interrupt fires.
///
/// This allows drivers to check bindings at compile-time.
pub unsafe trait Binding<I: InterruptSource, H: Handler<I>> {}