atsamd_hal/peripherals/eic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
//! # External Interrupt Controller
//!
//! This module provides typesafe APIs for interacting with the EIC peripheral,
//! which is used to generate interrupts based on the state of a GPIO.
//!
//! Each chip has a number of EXTINT channels:
//!
//! * SAMD11: 8 channels
//! * SAMD21/SAMx5x: 16 channels
//!
//! Each channel can operate independently, and sense state changes for a single
//! GPIO pin at a time. Refer to the datasheet for GPIO pin/EXTINT channel
//! compatibility. In this module, an [`ExtInt`] represents an EXTINT channel
//! which is tied to a GPIO [`Pin`], and is capable of sensing state changes.
//!
//! ## Steps to create an [`ExtInt`]
//!
//! 1. Start by creating an [`Eic`] struct, by calling [`Eic::new`]. This
//! initializes the EIC peripheral and sets up the correct clocking.
//!
//! 1. Turn the [`Eic`] into a tuple of [`Channel`]s by calling [`Eic::split`].
//! Each channel represents a single EXTINT channel.
//!
//! 1. Assign a pin to a channel by calling [`Channel::with_pin`]. This returns
//! a fully configured and ready to use [`ExtInt`]. A [`Pin`] can also be
//! directly converted into an [`ExtInt`] by calling one of the methods
//! provided by the [`EicPin`] trait.
//!
//! ### Example setup
//!
//! ```no_run
//! let eic_clock = clocks.eic(&gclk0).unwrap();
//! // Initialize the EIC peripheral
//! let eic = Eic::new(&mut peripherals.pm, eic_clock, peripherals.eic);
//! // Split into channels
//! let eic_channels = eic.split();
//!
//! // Take the pin that we want to use
//! let button: Pin<_, PullUpInterrupt> = pins.d10.into();
//!
//! // Turn the EXTINT[2] channel into an ExtInt struct
//! let mut extint = eic_channels.2.with_pin(button);
//! ```
//!
//! ## `async` operation <span class="stab portability" title="Available on crate feature `async` only"><code>async</code></span>
//!
//! [`ExtInt`]s can be used for async operations. Configuring the [`Eic`] in
//! async mode is relatively simple:
//!
//! * Bind the corresponding `EIC` interrupt source to the SPI
//! [`InterruptHandler`] (refer to the module-level
//! [`async_hal`](crate::async_hal) documentation for more information).
//!
//! * SAMD11/SAMD21: Turn an [`Eic`] into an async-enabled [`Eic`] by calling
//! [`Eic::into_future`]. Since there is only a single interrupt handler for
//! the EIC peripheral, all EXTINT channels must be turned into async channels
//! at once.
//! * SAMx5x: Turn an individuel [`ExtInt`] into an async-enabled [`ExtInt`] by
//! calling [`ExtInt::into_future`]. Each channel has a dedicated interrupt
//! source, therefore you must individually choose which channels to turn into
//! async channels.
//! * Use the provided [`wait`](ExtInt::wait) method. async-enabled [`ExtInt`]s
//! also implement [`embedded_hal_async::digital::Wait`].
use core::marker::PhantomData;
use atsamd_hal_macros::{hal_cfg, hal_module};
use seq_macro::seq;
use crate::{
clock::EicClock,
gpio::{AnyPin, Pin},
pac,
typelevel::{NoneT, Sealed},
};
#[hal_module(
any("eic-d11", "eic-d21") => "eic/d11/mod.rs",
"eic-d5x" => "eic/d5x/mod.rs",
)]
mod impls {}
#[cfg(feature = "async")]
pub use impls::async_api::*;
pub type Sense = pac::eic::config::Sense0select;
/// Trait representing an EXTINT channel ID.
pub trait ChId {
const ID: usize;
}
/// Marker type that represents an EXTINT channel capable of doing async
/// operations.
#[cfg(feature = "async")]
pub enum EicFuture {}
/// Trait representing a GPIO pin which can be used as an external interrupt.
pub trait EicPin: AnyPin + Sealed {
type Floating;
type PullUp;
type PullDown;
type ChId: ChId;
#[hal_cfg("eic-d5x")]
#[cfg(feature = "async")]
type InterruptSource: crate::async_hal::interrupts::InterruptSource;
/// Configure a pin as a floating external interrupt
fn into_floating_ei(self, chan: Channel<Self::ChId>) -> Self::Floating;
/// Configure a pin as pulled-up external interrupt
fn into_pull_up_ei(self, chan: Channel<Self::ChId>) -> Self::PullUp;
/// Configure a pin as pulled-down external interrupt
fn into_pull_down_ei(self, chan: Channel<Self::ChId>) -> Self::PullDown;
}
/// A numbered external interrupt, which can be used to sense state changes on
/// its pin.
pub struct ExtInt<P, Id, F = NoneT>
where
P: EicPin,
Id: ChId,
{
chan: Channel<Id, F>,
pin: Pin<P::Id, P::Mode>,
}
impl<P, Id, F> ExtInt<P, Id, F>
where
P: EicPin,
Id: ChId,
{
/// Release the underlying resources: [`Pin`] and [`Channel`].
pub fn free(self) -> (Pin<P::Id, P::Mode>, Channel<Id, F>) {
(self.pin, self.chan)
}
/// Construct pad from the appropriate pin in any mode.
/// You may find it more convenient to use the `into_pad` trait
/// and avoid referencing the pad type.
fn new(pin: P, chan: Channel<Id, F>) -> Self {
ExtInt {
pin: pin.into(),
chan,
}
}
}
/// EIC channel.
///
/// Use this struct to create an [`ExtInt`](pins::ExtInt) by calling
/// [`with_pin`](Self::with_pin).
pub struct Channel<Id: ChId, F = NoneT> {
eic: core::mem::ManuallyDrop<pac::Eic>,
_id: PhantomData<Id>,
_irqs: PhantomData<F>,
}
impl<Id: ChId, F> Channel<Id, F> {
/// Assign a pin to this [`Channel`], and turn it into an [`ExtInt`], which
/// is capable of sensing state changes on the pin.
pub fn with_pin<P: EicPin<ChId = Id>>(self, pin: P) -> ExtInt<P, Id, F> {
ExtInt::new(pin, self)
}
fn new(eic: pac::Eic) -> Self {
Self {
eic: core::mem::ManuallyDrop::new(eic),
_id: PhantomData,
_irqs: PhantomData,
}
}
#[hal_cfg("eic-d5x")]
#[cfg(feature = "async")]
fn change_mode<N>(self) -> Channel<Id, N> {
Channel {
eic: self.eic,
_id: self._id,
_irqs: PhantomData,
}
}
}
/// External Interrupt Controller.
///
/// Use [`split`](Self::split) to split the struct into individual channels,
/// which can then be used to create [`ExtInt`]s, by calling
/// [`Channel::with_pin`].
pub struct Eic<I = NoneT> {
eic: pac::Eic,
_irqs: PhantomData<I>,
}
impl Eic {
/// Create a new [`Eic`] and initialize it.
#[hal_cfg(any("eic-d11", "eic-d21"))]
pub fn new(pm: &mut pac::Pm, _clock: EicClock, eic: pac::Eic) -> Self {
pm.apbamask().modify(|_, w| w.eic_().set_bit());
// Reset the EIC
eic.ctrl().modify(|_, w| w.swrst().set_bit());
while eic.ctrl().read().swrst().bit_is_set() {
core::hint::spin_loop();
}
eic.ctrl().modify(|_, w| w.enable().set_bit());
while eic.status().read().syncbusy().bit_is_set() {
cortex_m::asm::nop();
}
Self {
eic,
_irqs: PhantomData,
}
}
/// Create and initialize a new [`Eic`], and wire it up to the
/// ultra-low-power 32kHz clock source.
#[hal_cfg("eic-d5x")]
pub fn new(mclk: &mut pac::Mclk, _clock: EicClock, eic: pac::Eic) -> Self {
mclk.apbamask().modify(|_, w| w.eic_().set_bit());
let mut eic = Self {
eic,
_irqs: PhantomData,
};
// Reset the EIC
eic.swreset();
// Use the low-power 32k clock and enable.
eic.eic.ctrla().modify(|_, w| {
w.cksel().set_bit();
w.enable().set_bit()
});
while eic.eic.syncbusy().read().enable().bit_is_set() {
core::hint::spin_loop();
}
eic
}
/// Release the EIC and return the register block.
///
/// **Note**: The [`Channels`] struct is consumed by this method. This means
/// that any [`Channel`] obtained by [`split`](Eic::split) must be
/// moved back into the [`Channels`] struct before being able to pass it
/// into [`free`](Eic::free).
pub fn free(mut self, _channels: Channels) -> pac::Eic {
self.swreset();
self.eic
}
}
impl<F> Eic<F> {
/// Reset the EIC
#[atsamd_hal_macros::hal_macro_helper]
fn swreset(&mut self) {
#[hal_cfg(any("eic-d11", "eic-d21"))]
let ctrl = self.eic.ctrl();
#[hal_cfg("eic-d5x")]
let ctrl = self.eic.ctrla();
ctrl.modify(|_, w| w.swrst().set_bit());
while ctrl.read().swrst().bit_is_set() {
core::hint::spin_loop();
}
}
}
#[cfg(feature = "async")]
impl Eic<EicFuture> {
/// Release the EIC and return the register block.
///
/// **Note**: The [`Channels`] struct is consumed by this method. This means
/// that any [`Channel`] obtained by [`split`](Eic::split) must be
/// moved back into the [`Channels`] struct before being able to pass it
/// into [`free`](Eic::free).
pub fn free(mut self, _channels: FutureChannels) -> pac::Eic {
self.swreset();
self.eic
}
}
#[hal_cfg("eic-d11")]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {8}
};
}
#[hal_cfg(any("eic-d5x", "eic-d21"))]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {16}
};
}
macro_rules! get {
($literal:literal) => {
$literal
};
}
/// The number of EXTINT channels on this chip.
pub const NUM_CHANNELS: usize = with_num_channels!(get);
macro_rules! define_channels_struct {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
#(
/// Type alias for a channel number
pub enum Ch~N {}
impl ChId for Ch~N {
const ID: usize = N;
}
)*
/// Struct generating individual handles to each EXTINT channel
pub struct Channels(
#(
pub Channel<Ch~N>,
)*
);
});
};
}
with_num_channels!(define_channels_struct);
#[cfg(feature = "async")]
macro_rules! define_channels_struct_future {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
/// Struct generating individual handles to each EXTINT channel for `async` operation
pub struct FutureChannels(
#(
pub Channel<Ch~N, EicFuture>,
)*
);
});
};
}
#[cfg(feature = "async")]
with_num_channels!(define_channels_struct_future);
macro_rules! define_split {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
/// Split the EIC into individual channels.
#[inline]
pub fn split(self) -> Channels {
Channels(
#(
unsafe { Channel::new(core::ptr::read(&self.eic as *const _)) },
)*
)
}
});
};
}
impl Eic {
with_num_channels!(define_split);
}
#[cfg(feature = "async")]
macro_rules! define_split_future {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
/// Split the EIC into individual channels
#[inline]
pub fn split(self) -> FutureChannels {
FutureChannels(
#(
unsafe { Channel::new(core::ptr::read(&self.eic as *const _)) },
)*
)
}
});
};
}
#[cfg(feature = "async")]
impl Eic<EicFuture> {
with_num_channels!(define_split_future);
}