atsamd_hal/sercom/spi/impl_ehal/
dma.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//! `embedded-hal` and `embedded-io` implementations for DMA-enabled [`Spi`]s

use num_traits::{AsPrimitive, PrimInt};

use crate::dmac::{channel, sram::DmacDescriptor, AnyChannel, Beat, Buffer, Ready};
use crate::ehal::spi::SpiBus;
use crate::sercom::dma::{
    read_dma, read_dma_linked, write_dma, write_dma_linked, SercomPtr, SharedSliceBuffer,
    SinkSourceBuffer,
};

use super::{
    Capability, Config, DataWidth, Duplex, Error, MasterMode, OpMode, Receive, Sercom, Size, Slave,
    Spi, Transmit, ValidConfig, ValidPads, Word,
};

impl<P, M, Z, D, R, T> Spi<Config<P, M, Z>, D, R, T>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
    Config<P, M, Z>: ValidConfig,
    D: Capability,
    Z::Word: Beat,
{
    #[inline]
    pub(in super::super) fn sercom_ptr(&self) -> SercomPtr<Z::Word> {
        SercomPtr(self.config.regs.spi().data().as_ptr() as *mut _)
    }
}

// Write implementation is the same for Master and Slave SPIs.
impl<P, M, Z, D, R, T, S> Spi<Config<P, M, Z>, D, R, T>
where
    P: ValidPads,
    M: OpMode,
    Z: Size + 'static,
    Config<P, M, Z>: ValidConfig<Sercom = S>,
    D: Transmit,
    S: Sercom,
    Z::Word: PrimInt + AsPrimitive<DataWidth> + Beat,
    DataWidth: AsPrimitive<Z::Word>,
    T: AnyChannel<Status = Ready>,
{
    pub(super) fn write_dma(&mut self, buf: &[Z::Word]) -> Result<usize, Error> {
        if buf.is_empty() {
            return Ok(0);
        }

        // Ignore RX buffer overflows by disabling the receiver
        self.config.as_mut().regs.rx_disable();

        let sercom_ptr = self.sercom_ptr();
        let tx = self._tx_channel.as_mut();
        let mut words = crate::sercom::dma::SharedSliceBuffer::from_slice(buf);

        // SAFETY: We make sure that any DMA transfer is complete or stopped before
        // returning. The order of operations is important; the RX transfer
        // must be ready to receive before the TX transfer is initiated.
        unsafe {
            crate::sercom::dma::write_dma::<_, _, S>(tx, sercom_ptr, &mut words);
        }

        while !tx.xfer_complete() {
            core::hint::spin_loop();
        }

        // Defensively disable channels
        tx.stop();

        // Reenable receiver only if necessary
        if D::RX_ENABLE {
            self.config.as_mut().regs.rx_enable();
        }

        self._tx_channel.as_mut().xfer_success()?;
        Ok(buf.len())
    }
}

impl<P, M, S, C, D, R, T> Spi<Config<P, M, C>, D, R, T>
where
    Config<P, M, C>: ValidConfig<Sercom = S>,
    S: Sercom,
    P: ValidPads,
    M: MasterMode,
    C: Size + 'static,
    C::Word: PrimInt + AsPrimitive<DataWidth> + Beat,
    DataWidth: AsPrimitive<C::Word>,
    D: Capability,
    R: AnyChannel<Status = Ready>,
    T: AnyChannel<Status = Ready>,
{
    #[inline]
    fn transfer_blocking<Source: Buffer<Beat = C::Word>, Dest: Buffer<Beat = C::Word>>(
        &mut self,
        dest: &mut Dest,
        source: &mut Source,
    ) -> Result<(), Error> {
        let sercom_ptr = self.sercom_ptr();
        let rx = self._rx_channel.as_mut();
        let tx = self._tx_channel.as_mut();

        // SAFETY: We make sure that any DMA transfer is complete or stopped before
        // returning. The order of operations is important; the RX transfer
        // must be ready to receive before the TX transfer is initiated.
        unsafe {
            read_dma::<_, _, S>(rx, sercom_ptr.clone(), dest);
            write_dma::<_, _, S>(tx, sercom_ptr, source);
        }

        while !(rx.xfer_complete() && tx.xfer_complete()) {
            core::hint::spin_loop();
        }

        // Defensively disable channels
        tx.stop();
        rx.stop();

        // Check for overflows or DMA errors
        self.read_status().check_bus_error()?;
        self._rx_channel
            .as_mut()
            .xfer_success()
            .and(self._tx_channel.as_mut().xfer_success())?;
        Ok(())
    }

    #[inline]
    pub(super) fn read_dma_master(&mut self, mut words: &mut [C::Word]) -> Result<(), Error> {
        if words.is_empty() {
            return Ok(());
        }

        let mut source_word = self.config.nop_word.as_();
        let mut source = SinkSourceBuffer::new(&mut source_word, words.len());

        self.transfer_blocking(&mut words, &mut source)
    }
}

/// [`SpiBus`] implementation for [`Spi`], using DMA transfers.
impl<P, M, S, C, R, T> SpiBus<Word<C>> for Spi<Config<P, M, C>, Duplex, R, T>
where
    Config<P, M, C>: ValidConfig<Sercom = S>,
    S: Sercom,
    P: ValidPads,
    M: MasterMode,
    C: Size + 'static,
    C::Word: PrimInt + AsPrimitive<DataWidth> + Beat,
    DataWidth: AsPrimitive<C::Word>,
    R: AnyChannel<Status = Ready>,
    T: AnyChannel<Status = Ready>,
{
    #[inline]
    fn read(&mut self, words: &mut [C::Word]) -> Result<(), Self::Error> {
        self.read_dma_master(words)
    }

    #[inline]
    fn write(&mut self, words: &[C::Word]) -> Result<(), Self::Error> {
        self.write_dma(words)?;
        Ok(())
    }

    #[inline]
    fn transfer(&mut self, mut read: &mut [C::Word], write: &[C::Word]) -> Result<(), Self::Error> {
        use core::cmp::Ordering;

        // No work to do here
        if write.is_empty() && read.is_empty() {
            return Ok(());
        }

        // Handle 0-length special cases
        if write.is_empty() {
            return self.read_dma_master(read);
        } else if read.is_empty() {
            self.write_dma(write)?;
            return Ok(());
        }

        // Reserve space for a DMAC SRAM descriptor if we need to make a linked
        // transfer. Must not be dropped until all transfers have completed
        // or have been stopped.
        let mut linked_descriptor = DmacDescriptor::default();

        // If read < write, the incoming words will be written to this memory location;
        // it will be discarded after. If read > write, all writes after the
        // buffer has been exhausted will write the nop word to "stimulate" the slave
        // into sending data. Must not be dropped until all transfers have
        // completed or have been stopped.
        let mut source_sink_word = self.config.nop_word.as_();
        let mut sercom_ptr = self.sercom_ptr();

        let (read_link, write_link) = match read.len().cmp(&write.len()) {
            Ordering::Equal => {
                let mut write = SharedSliceBuffer::from_slice(write);
                return self.transfer_blocking(&mut read, &mut write);
            }

            // `read` is shorter; link transfer to sink incoming words after the buffer has been
            // filled.
            Ordering::Less => {
                let mut sink =
                    SinkSourceBuffer::new(&mut source_sink_word, write.len() - read.len());
                unsafe {
                    channel::write_descriptor(
                        &mut linked_descriptor,
                        &mut sercom_ptr,
                        &mut sink,
                        // Add a null descriptor pointer to end the transfer.
                        core::ptr::null_mut(),
                    );
                }

                (Some(&mut linked_descriptor), None)
            }

            // `write` is shorter; link transfer to send NOP word after the buffer has been
            // exhausted.
            Ordering::Greater => {
                let mut source =
                    SinkSourceBuffer::new(&mut source_sink_word, read.len() - write.len());
                unsafe {
                    channel::write_descriptor(
                        &mut linked_descriptor,
                        &mut source,
                        &mut sercom_ptr,
                        // Add a null descriptor pointer to end the transfer.
                        core::ptr::null_mut(),
                    );
                }

                (None, Some(&mut linked_descriptor))
            }
        };

        let rx = self._rx_channel.as_mut();
        let tx = self._tx_channel.as_mut();

        let mut write = SharedSliceBuffer::from_slice(write);

        // SAFETY: We make sure that any DMA transfer is complete or stopped before
        // returning. The order of operations is important; the RX transfer
        // must be ready to receive before the TX transfer is initiated.
        unsafe {
            read_dma_linked::<_, _, S>(rx, sercom_ptr.clone(), &mut read, read_link);
            write_dma_linked::<_, _, S>(tx, sercom_ptr, &mut write, write_link);
        }

        while !(rx.xfer_complete() && tx.xfer_complete()) {
            core::hint::spin_loop();
        }

        // Defensively disable channels
        tx.stop();
        rx.stop();

        // Check for overflows or DMA errors
        self.read_status().check_bus_error()?;
        self._rx_channel
            .as_mut()
            .xfer_success()
            .and(self._tx_channel.as_mut().xfer_success())?;
        Ok(())
    }

    #[inline]
    fn transfer_in_place(&mut self, words: &mut [C::Word]) -> Result<(), Self::Error> {
        // Safety: Aliasing the buffer is only safe because the DMA read will always be
        // lagging one word behind the write, so they don't overlap on the same memory.
        // It's preferable to use two `SharedSliceBuffer`s here; using the `words` slice
        // directly as a buffer could potentially cause UB issues if not careful when
        // aliasing, as it could be easy to create two `&mut` references pointing to the
        // same buffer. `read_buf` and `write_buf` may only be read/written to by the
        // DMAC, otherwise an `UnsafeCell` would be necessary.
        unsafe {
            let mut read_buf = SharedSliceBuffer::from_slice_unchecked(words);
            let mut write_buf = SharedSliceBuffer::from_slice(words);
            self.transfer_blocking(&mut read_buf, &mut write_buf)
        }
    }

    #[inline]
    fn flush(&mut self) -> Result<(), Error> {
        self.flush_tx();
        Ok(())
    }
}

/// [`embedded_io::Write`] implementation for [`Transmit`] [`Spi`]s in either
/// [`Slave`] or [`MasterMode`], using DMA transfers.
impl<P, M, Z, D, R, T, S> embedded_io::Write for Spi<Config<P, M, Z>, D, R, T>
where
    P: ValidPads,
    M: OpMode,
    Z: Size<Word = u8> + 'static,
    Config<P, M, Z>: ValidConfig<Sercom = S>,
    D: Transmit,
    S: Sercom,
    T: AnyChannel<Status = Ready>,
{
    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        Spi::write_dma(self, buf)
    }

    fn flush(&mut self) -> Result<(), Self::Error> {
        self.flush_tx();
        Ok(())
    }
}

/// [`embedded_io::Read`] implementation for [`Receive`] [`Spi`]s in
/// [`MasterMode`], using DMA transfers.
impl<P, M, Z, D, R, T, S> embedded_io::Read for Spi<Config<P, M, Z>, D, R, T>
where
    P: ValidPads,
    M: MasterMode,
    Z: Size<Word = u8> + 'static,
    Config<P, M, Z>: ValidConfig<Sercom = S>,
    D: Receive,
    S: Sercom,
    R: AnyChannel<Status = Ready>,
    T: AnyChannel<Status = Ready>,
{
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
        self.read_dma_master(buf)?;
        Ok(buf.len())
    }
}

/// [`embedded_io::Read`] implementation for [`Receive`] [`Spi`]s in [`Slave`]
/// mode, using DMA transfers.
impl<P, Z, D, R, T, S> embedded_io::Read for Spi<Config<P, Slave, Z>, D, R, T>
where
    P: ValidPads,
    Z: Size<Word = u8> + 'static,
    Config<P, Slave, Z>: ValidConfig<Sercom = S>,
    D: Receive,
    S: Sercom,
    R: AnyChannel<Status = Ready>,
{
    fn read(&mut self, mut buf: &mut [u8]) -> Result<usize, Self::Error> {
        if buf.is_empty() {
            return Ok(0);
        }

        // In Slave mode, RX words can come in even if we haven't sent anything. This
        // means some words can arrive asynchronously while we weren't looking (similar
        // to UART RX). We need to check if we haven't missed any.
        self.flush_rx()?;
        let sercom_ptr = self.sercom_ptr();
        let rx = self._rx_channel.as_mut();

        // SAFETY: We make sure that any DMA transfer is complete or stopped before
        // returning.
        unsafe {
            read_dma::<_, _, S>(rx, sercom_ptr.clone(), &mut buf);
        }

        while !(rx.xfer_complete()) {
            core::hint::spin_loop();
        }

        // Defensively disable channel
        rx.stop();

        // Check for overflows or DMA errors
        self.read_status().check_bus_error()?;
        self._rx_channel.as_mut().xfer_success()?;
        Ok(buf.len())
    }
}