embedded_sdmmc/sdmmc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
//! embedded-sdmmc-rs - SDMMC Protocol
//!
//! Implements the SD/MMC protocol on some generic SPI interface.
//!
//! This is currently optimised for readability and debugability, not
//! performance.
use super::sdmmc_proto::*;
use super::{Block, BlockCount, BlockDevice, BlockIdx};
use core::cell::RefCell;
use nb::block;
const DEFAULT_DELAY_COUNT: u32 = 32_000;
/// Represents an SD Card interface built from an SPI peripheral and a Chip
/// Select pin. We need Chip Select to be separate so we can clock out some
/// bytes without Chip Select asserted (which puts the card into SPI mode).
pub struct SdMmcSpi<SPI, CS>
where
SPI: embedded_hal::spi::FullDuplex<u8>,
CS: embedded_hal::digital::v2::OutputPin,
<SPI as embedded_hal::spi::FullDuplex<u8>>::Error: core::fmt::Debug,
{
spi: RefCell<SPI>,
cs: RefCell<CS>,
card_type: CardType,
state: State,
}
/// The possible errors `SdMmcSpi` can generate.
#[derive(Debug, Copy, Clone)]
pub enum Error {
/// We got an error from the SPI peripheral
Transport,
/// We failed to enable CRC checking on the SD card
CantEnableCRC,
/// We didn't get a response when reading data from the card
TimeoutReadBuffer,
/// We didn't get a response when waiting for the card to not be busy
TimeoutWaitNotBusy,
/// We didn't get a response when executing this command
TimeoutCommand(u8),
/// We didn't get a response when executing this application-specific command
TimeoutACommand(u8),
/// We got a bad response from Command 58
Cmd58Error,
/// We failed to read the Card Specific Data register
RegisterReadError,
/// We got a CRC mismatch (card gave us, we calculated)
CrcError(u16, u16),
/// Error reading from the card
ReadError,
/// Error writing to the card
WriteError,
/// Can't perform this operation with the card in this state
BadState,
/// Couldn't find the card
CardNotFound,
/// Couldn't set a GPIO pin
GpioError,
}
/// The possible states `SdMmcSpi` can be in.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum State {
NoInit,
Error,
Idle,
}
/// The different types of card we support.
#[derive(Debug, Copy, Clone, PartialEq)]
enum CardType {
SD1,
SD2,
SDHC,
}
/// A terrible hack for busy-waiting the CPU while we wait for the card to
/// sort itself out.
///
/// @TODO replace this!
struct Delay(u32);
impl Delay {
fn new() -> Delay {
Delay(DEFAULT_DELAY_COUNT)
}
fn delay(&mut self, err: Error) -> Result<(), Error> {
if self.0 == 0 {
Err(err)
} else {
let dummy_var: u32 = 0;
for _ in 0..100 {
unsafe { core::ptr::read_volatile(&dummy_var) };
}
self.0 -= 1;
Ok(())
}
}
}
impl<SPI, CS> SdMmcSpi<SPI, CS>
where
SPI: embedded_hal::spi::FullDuplex<u8>,
CS: embedded_hal::digital::v2::OutputPin,
<SPI as embedded_hal::spi::FullDuplex<u8>>::Error: core::fmt::Debug,
{
/// Create a new SD/MMC controller using a raw SPI interface.
pub fn new(spi: SPI, cs: CS) -> SdMmcSpi<SPI, CS> {
SdMmcSpi {
spi: RefCell::new(spi),
cs: RefCell::new(cs),
card_type: CardType::SD1,
state: State::NoInit,
}
}
/// Get a temporary borrow on the underlying SPI device. Useful if you
/// need to re-clock the SPI after performing `init()`.
pub fn spi(&mut self) -> core::cell::RefMut<SPI> {
self.spi.borrow_mut()
}
fn cs_high(&self) -> Result<(), Error> {
self.cs
.borrow_mut()
.set_high()
.map_err(|_| Error::GpioError)
}
fn cs_low(&self) -> Result<(), Error> {
self.cs.borrow_mut().set_low().map_err(|_| Error::GpioError)
}
/// This routine must be performed with an SPI clock speed of around 100 - 400 kHz.
/// Afterwards you may increase the SPI clock speed.
pub fn init(&mut self) -> Result<(), Error> {
let f = |s: &mut Self| {
// Assume it hasn't worked
s.state = State::Error;
// Supply minimum of 74 clock cycles without CS asserted.
s.cs_high()?;
for _ in 0..10 {
s.send(0xFF)?;
}
// Assert CS
s.cs_low()?;
// Enter SPI mode
let mut attempts = 32;
while attempts > 0 {
match s.card_command(CMD0, 0) {
Err(Error::TimeoutCommand(0)) => {
// Try again?
attempts -= 1;
}
Err(e) => {
return Err(e);
}
Ok(R1_IDLE_STATE) => {
break;
}
Ok(_) => {
// Try again
}
}
}
if attempts == 0 {
return Err(Error::CardNotFound);
}
// Enable CRC
if s.card_command(CMD59, 1)? != R1_IDLE_STATE {
return Err(Error::CantEnableCRC);
}
// Check card version
let mut delay = Delay::new();
loop {
if s.card_command(CMD8, 0x1AA)? == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE) {
s.card_type = CardType::SD1;
break;
}
s.receive()?;
s.receive()?;
s.receive()?;
let status = s.receive()?;
if status == 0xAA {
s.card_type = CardType::SD2;
break;
}
delay.delay(Error::TimeoutCommand(CMD8))?;
}
let arg = match s.card_type {
CardType::SD1 => 0,
CardType::SD2 | CardType::SDHC => 0x4000_0000,
};
let mut delay = Delay::new();
while s.card_acmd(ACMD41, arg)? != R1_READY_STATE {
delay.delay(Error::TimeoutACommand(ACMD41))?;
}
if s.card_type == CardType::SD2 {
if s.card_command(CMD58, 0)? != 0 {
return Err(Error::Cmd58Error);
}
if (s.receive()? & 0xC0) == 0xC0 {
s.card_type = CardType::SDHC;
}
// Discard other three bytes
s.receive()?;
s.receive()?;
s.receive()?;
}
s.state = State::Idle;
Ok(())
};
let result = f(self);
self.cs_high()?;
let _ = self.receive();
result
}
/// De-init the card so it can't be used
pub fn deinit(&mut self) {
self.state = State::NoInit;
}
/// Return the usable size of this SD card in bytes.
pub fn card_size_bytes(&self) -> Result<u64, Error> {
self.check_state()?;
self.with_chip_select(|s| {
let csd = s.read_csd()?;
match csd {
Csd::V1(ref contents) => Ok(contents.card_capacity_bytes()),
Csd::V2(ref contents) => Ok(contents.card_capacity_bytes()),
}
})
}
/// Erase some blocks on the card.
pub fn erase(&mut self, _first_block: BlockIdx, _last_block: BlockIdx) -> Result<(), Error> {
self.check_state()?;
unimplemented!();
}
/// Can this card erase single blocks?
pub fn erase_single_block_enabled(&self) -> Result<bool, Error> {
self.check_state()?;
self.with_chip_select(|s| {
let csd = s.read_csd()?;
match csd {
Csd::V1(ref contents) => Ok(contents.erase_single_block_enabled()),
Csd::V2(ref contents) => Ok(contents.erase_single_block_enabled()),
}
})
}
/// Return an error if we're not in `State::Idle`. It probably means
/// they haven't called `begin()`.
fn check_state(&self) -> Result<(), Error> {
if self.state != State::Idle {
Err(Error::BadState)
} else {
Ok(())
}
}
/// Perform a function that might error with the chipselect low.
/// Always releases the chipselect, even if the function errors.
fn with_chip_select_mut<F, T>(&self, func: F) -> Result<T, Error>
where
F: FnOnce(&Self) -> Result<T, Error>,
{
self.cs_low()?;
let result = func(self);
self.cs_high()?;
result
}
/// Perform a function that might error with the chipselect low.
/// Always releases the chipselect, even if the function errors.
fn with_chip_select<F, T>(&self, func: F) -> Result<T, Error>
where
F: FnOnce(&Self) -> Result<T, Error>,
{
self.cs_low()?;
let result = func(self);
self.cs_high()?;
result
}
/// Read the 'card specific data' block.
fn read_csd(&self) -> Result<Csd, Error> {
match self.card_type {
CardType::SD1 => {
let mut csd = CsdV1::new();
if self.card_command(CMD9, 0)? != 0 {
return Err(Error::RegisterReadError);
}
self.read_data(&mut csd.data)?;
Ok(Csd::V1(csd))
}
CardType::SD2 | CardType::SDHC => {
let mut csd = CsdV2::new();
if self.card_command(CMD9, 0)? != 0 {
return Err(Error::RegisterReadError);
}
self.read_data(&mut csd.data)?;
Ok(Csd::V2(csd))
}
}
}
/// Read an arbitrary number of bytes from the card. Always fills the
/// given buffer, so make sure it's the right size.
fn read_data(&self, buffer: &mut [u8]) -> Result<(), Error> {
// Get first non-FF byte.
let mut delay = Delay::new();
let status = loop {
let s = self.receive()?;
if s != 0xFF {
break s;
}
delay.delay(Error::TimeoutReadBuffer)?;
};
if status != DATA_START_BLOCK {
return Err(Error::ReadError);
}
for b in buffer.iter_mut() {
*b = self.receive()?;
}
let mut crc = u16::from(self.receive()?);
crc <<= 8;
crc |= u16::from(self.receive()?);
let calc_crc = crc16(buffer);
if crc != calc_crc {
return Err(Error::CrcError(crc, calc_crc));
}
Ok(())
}
/// Write an arbitrary number of bytes to the card.
fn write_data(&self, token: u8, buffer: &[u8]) -> Result<(), Error> {
let calc_crc = crc16(buffer);
self.send(token)?;
for &b in buffer.iter() {
self.send(b)?;
}
self.send((calc_crc >> 8) as u8)?;
self.send(calc_crc as u8)?;
let status = self.receive()?;
if (status & DATA_RES_MASK) != DATA_RES_ACCEPTED {
Err(Error::WriteError)
} else {
Ok(())
}
}
/// Perform an application-specific command.
fn card_acmd(&self, command: u8, arg: u32) -> Result<u8, Error> {
self.card_command(CMD55, 0)?;
self.card_command(command, arg)
}
/// Perform a command.
fn card_command(&self, command: u8, arg: u32) -> Result<u8, Error> {
self.wait_not_busy()?;
let mut buf = [
0x40 | command,
(arg >> 24) as u8,
(arg >> 16) as u8,
(arg >> 8) as u8,
arg as u8,
0,
];
buf[5] = crc7(&buf[0..5]);
for b in buf.iter() {
self.send(*b)?;
}
// skip stuff byte for stop read
if command == CMD12 {
let _result = self.receive()?;
}
for _ in 0..512 {
let result = self.receive()?;
if (result & 0x80) == 0 {
return Ok(result);
}
}
Err(Error::TimeoutCommand(command))
}
/// Receive a byte from the SD card by clocking in an 0xFF byte.
fn receive(&self) -> Result<u8, Error> {
self.transfer(0xFF)
}
/// Send a byte from the SD card.
fn send(&self, out: u8) -> Result<(), Error> {
let _ = self.transfer(out)?;
Ok(())
}
/// Send one byte and receive one byte.
fn transfer(&self, out: u8) -> Result<u8, Error> {
let mut spi = self.spi.borrow_mut();
block!(spi.send(out)).map_err(|_e| Error::Transport)?;
block!(spi.read()).map_err(|_e| Error::Transport)
}
/// Spin until the card returns 0xFF, or we spin too many times and
/// timeout.
fn wait_not_busy(&self) -> Result<(), Error> {
let mut delay = Delay::new();
loop {
let s = self.receive()?;
if s == 0xFF {
break;
}
delay.delay(Error::TimeoutWaitNotBusy)?;
}
Ok(())
}
}
impl<SPI, CS> BlockDevice for SdMmcSpi<SPI, CS>
where
SPI: embedded_hal::spi::FullDuplex<u8>,
<SPI as embedded_hal::spi::FullDuplex<u8>>::Error: core::fmt::Debug,
CS: embedded_hal::digital::v2::OutputPin,
{
type Error = Error;
/// Read one or more blocks, starting at the given block index.
fn read(
&self,
blocks: &mut [Block],
start_block_idx: BlockIdx,
_reason: &str,
) -> Result<(), Self::Error> {
self.check_state()?;
let start_idx = match self.card_type {
CardType::SD1 | CardType::SD2 => start_block_idx.0 * 512,
CardType::SDHC => start_block_idx.0,
};
self.with_chip_select(|s| {
if blocks.len() == 1 {
// Start a single-block read
s.card_command(CMD17, start_idx)?;
s.read_data(&mut blocks[0].contents)?;
} else {
// Start a multi-block read
s.card_command(CMD18, start_idx)?;
for block in blocks.iter_mut() {
s.read_data(&mut block.contents)?;
}
// Stop the read
s.card_command(CMD12, 0)?;
}
Ok(())
})
}
/// Write one or more blocks, starting at the given block index.
fn write(&self, blocks: &[Block], start_block_idx: BlockIdx) -> Result<(), Self::Error> {
self.check_state()?;
let start_idx = match self.card_type {
CardType::SD1 | CardType::SD2 => start_block_idx.0 * 512,
CardType::SDHC => start_block_idx.0,
};
self.with_chip_select_mut(|s| {
if blocks.len() == 1 {
// Start a single-block write
s.card_command(CMD24, start_idx)?;
s.write_data(DATA_START_BLOCK, &blocks[0].contents)?;
s.wait_not_busy()?;
if s.card_command(CMD13, 0)? != 0x00 {
return Err(Error::WriteError);
}
if s.receive()? != 0x00 {
return Err(Error::WriteError);
}
} else {
// Start a multi-block write
s.card_command(CMD25, start_idx)?;
for block in blocks.iter() {
s.wait_not_busy()?;
s.write_data(WRITE_MULTIPLE_TOKEN, &block.contents)?;
}
// Stop the write
s.wait_not_busy()?;
s.send(STOP_TRAN_TOKEN)?;
}
Ok(())
})
}
/// Determine how many blocks this device can hold.
fn num_blocks(&self) -> Result<BlockCount, Self::Error> {
let num_bytes = self.card_size_bytes()?;
let num_blocks = (num_bytes / 512) as u32;
Ok(BlockCount(num_blocks))
}
}
// ****************************************************************************
//
// End Of File
//
// ****************************************************************************