atsamd_hal/dmac/channel/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
//! # Abstractions over individual DMA channels
//!
//! # Initializing
//!
//! Individual channels should be initialized through the
//! [`Channel::init`] method. This will return a `Channel<Id, Ready>` ready for
//! use by a [`Transfer`]. Initializing a channel requires setting a priority
//! level, as well as enabling or disabling interrupt requests (only for the
//! specific channel being initialized).
//!
//! # Burst Length and FIFO Threshold (SAMD51/SAME5x only)
//!
//! The transfer burst length can be configured through the
//! [`Channel::burst_length`] method. A burst is an atomic,
//! uninterruptible transfer which length corresponds to a number of beats. See
//! SAMD5x/E5x datasheet section 22.6.1.1 for more information. The FIFO
//! threshold can be configured through the
//! [`Channel::fifo_threshold`] method. This enables the channel
//! to wait for multiple Beats before sending a Burst. See SAMD5x/E5x datasheet
//! section 22.6.2.8 for more information.
//!
//! # Channel status
//!
//! Channels can be in any of three statuses: [`Uninitialized`], [`Ready`], and
//! [`Busy`]. These statuses are checked at compile time to ensure they are
//! properly initialized before launching DMA transfers.
//!
//! # Resetting
//!
//! Calling the [`Channel::reset`] method will reset the channel to its
//! `Uninitialized` state. You will be required to call [`Channel::init`]
//! again before being able to use it with a `Transfer`.

#![allow(unused_braces)]

use core::marker::PhantomData;
use core::sync::atomic;

use atsamd_hal_macros::{hal_cfg, hal_macro_helper};

use super::{
    dma_controller::{ChId, PriorityLevel, TriggerAction, TriggerSource},
    sram::{self, DmacDescriptor},
    transfer::{BufferPair, Transfer},
    Beat, Buffer, Error,
};
use crate::typelevel::{Is, Sealed};
use modular_bitfield::prelude::*;

mod reg;
use reg::RegisterBlock;

#[hal_cfg("dmac-d5x")]
use super::dma_controller::{BurstLength, FifoThreshold};

//==============================================================================
// Channel Status
//==============================================================================
pub trait Status: Sealed {
    type Uninitialized: Status;
    type Ready: Status;
}

/// Uninitialized channel
pub enum Uninitialized {}
impl Sealed for Uninitialized {}
impl Status for Uninitialized {
    type Uninitialized = Uninitialized;
    type Ready = Ready;
}

/// Initialized and ready to transfer channel
pub enum Ready {}
impl Sealed for Ready {}
impl Status for Ready {
    type Uninitialized = Uninitialized;
    type Ready = Ready;
}

/// Busy channel
pub enum Busy {}
impl Sealed for Busy {}
impl Status for Busy {
    type Uninitialized = Uninitialized;
    type Ready = Ready;
}

/// Uninitialized [`Channel`] configured for `async` operation
#[cfg(feature = "async")]
pub enum UninitializedFuture {}
#[cfg(feature = "async")]
impl Sealed for UninitializedFuture {}
#[cfg(feature = "async")]
impl Status for UninitializedFuture {
    type Uninitialized = UninitializedFuture;
    type Ready = ReadyFuture;
}

/// Initialized and ready to transfer in `async` operation
#[cfg(feature = "async")]
pub enum ReadyFuture {}
#[cfg(feature = "async")]
impl Sealed for ReadyFuture {}
#[cfg(feature = "async")]
impl Status for ReadyFuture {
    type Uninitialized = UninitializedFuture;
    type Ready = ReadyFuture;
}

pub trait ReadyChannel: Status {}
impl ReadyChannel for Ready {}
#[cfg(feature = "async")]
impl ReadyChannel for ReadyFuture {}

//==============================================================================
// AnyChannel
//==============================================================================
pub trait AnyChannel: Sealed + Is<Type = SpecificChannel<Self>> {
    type Status: Status;
    type Id: ChId;
}

pub type SpecificChannel<C> = Channel<<C as AnyChannel>::Id, <C as AnyChannel>::Status>;

pub type ChannelStatus<C> = <C as AnyChannel>::Status;
pub type ChannelId<C> = <C as AnyChannel>::Id;

impl<Id, S> Sealed for Channel<Id, S>
where
    Id: ChId,
    S: Status,
{
}

impl<Id, S> AnyChannel for Channel<Id, S>
where
    Id: ChId,
    S: Status,
{
    type Id = Id;
    type Status = S;
}

impl<Id, S> AsRef<Self> for Channel<Id, S>
where
    Id: ChId,
    S: Status,
{
    #[inline]
    fn as_ref(&self) -> &Self {
        self
    }
}

impl<Id, S> AsMut<Self> for Channel<Id, S>
where
    Id: ChId,
    S: Status,
{
    #[inline]
    fn as_mut(&mut self) -> &mut Self {
        self
    }
}

//==============================================================================
// Channel
//==============================================================================

/// DMA channel, capable of executing
/// [`Transfer`]s. Ongoing DMA transfers are automatically stopped when a
/// [`Channel`] is dropped.
pub struct Channel<Id: ChId, S: Status> {
    regs: RegisterBlock<Id>,
    _status: PhantomData<S>,
}

#[inline]
pub(super) fn new_chan<Id: ChId>(_id: PhantomData<Id>) -> Channel<Id, Uninitialized> {
    Channel {
        regs: RegisterBlock::new(_id),
        _status: PhantomData,
    }
}

#[cfg(feature = "async")]
#[inline]
pub(super) fn new_chan_future<Id: ChId>(_id: PhantomData<Id>) -> Channel<Id, UninitializedFuture> {
    Channel {
        regs: RegisterBlock::new(_id),
        _status: PhantomData,
    }
}

/// These methods may be used on any DMA channel in any configuration
impl<Id: ChId, S: Status> Channel<Id, S> {
    /// Configure the DMA channel so that it is ready to be used by a
    /// [`Transfer`](super::transfer::Transfer).
    ///
    /// # Return
    ///
    /// A `Channel` with a `Ready` status
    #[inline]
    #[hal_macro_helper]
    pub fn init(mut self, lvl: PriorityLevel) -> Channel<Id, S::Ready> {
        // Software reset the channel for good measure
        self._reset_private();

        #[hal_cfg(any("dmac-d11", "dmac-d21"))]
        // Setup priority level
        self.regs.chctrlb.modify(|_, w| w.lvl().variant(lvl));

        #[hal_cfg("dmac-d5x")]
        self.regs.chprilvl.modify(|_, w| w.prilvl().variant(lvl));

        self.change_status()
    }

    /// Selectively enable interrupts
    #[inline]
    pub fn enable_interrupts(&mut self, flags: InterruptFlags) {
        // SAFETY: This is safe as InterruptFlags is only capable of writing in
        // non-reserved bits
        self.regs
            .chintenset
            .write(|w| unsafe { w.bits(flags.into()) });
    }

    /// Selectively disable interrupts
    #[inline]
    pub fn disable_interrupts(&mut self, flags: InterruptFlags) {
        // SAFETY: This is safe as InterruptFlags is only capable of writing in
        // non-reserved bits
        self.regs
            .chintenclr
            .write(|w| unsafe { w.bits(flags.into()) });
    }

    /// Check the specified `flags`, clear then return any that were set
    #[inline]
    pub fn check_and_clear_interrupts(&mut self, flags: InterruptFlags) -> InterruptFlags {
        let mut cleared = 0;
        self.regs.chintflag.modify(|r, w| {
            cleared = r.bits() & flags.into_bytes()[0];
            unsafe { w.bits(cleared) }
        });

        InterruptFlags::from_bytes([cleared])
    }

    #[inline]
    pub(super) fn change_status<N: Status>(self) -> Channel<Id, N> {
        Channel {
            regs: self.regs,
            _status: PhantomData,
        }
    }

    #[inline]
    fn _reset_private(&mut self) {
        // Reset the channel to its startup state and wait for reset to complete
        self.regs.chctrla.modify(|_, w| w.swrst().set_bit());
        while self.regs.chctrla.read().swrst().bit_is_set() {}
    }

    #[inline]
    fn _trigger_private(&mut self) {
        self.regs.swtrigctrl.set_bit();
    }

    /// Enable the transfer, and emit a compiler fence.
    #[inline]
    fn _enable_private(&mut self) {
        // Prevent the compiler from re-ordering read/write
        // operations beyond this fence.
        // (see https://docs.rust-embedded.org/embedonomicon/dma.html#compiler-misoptimizations)
        atomic::fence(atomic::Ordering::Release); // ▲
        self.regs.chctrla.modify(|_, w| w.enable().set_bit());
    }

    /// Stop transfer on channel whether or not the transfer has completed
    #[inline]
    pub(crate) fn stop(&mut self) {
        self.regs.chctrla.modify(|_, w| w.enable().clear_bit());

        // Wait for the burst to finish
        while !self.xfer_complete() {
            core::hint::spin_loop();
        }

        // Prevent the compiler from re-ordering read/write
        // operations beyond this fence.
        // (see https://docs.rust-embedded.org/embedonomicon/dma.html#compiler-misoptimizations)
        atomic::fence(atomic::Ordering::Acquire); // ▼
    }

    /// Returns whether or not the transfer is complete.
    #[inline]
    pub(crate) fn xfer_complete(&mut self) -> bool {
        self.regs.chctrla.read().enable().bit_is_clear()
    }

    /// Returns the transfer's success status.
    #[allow(dead_code)]
    #[inline]
    pub(crate) fn xfer_success(&mut self) -> super::Result<()> {
        let success = self.regs.chintflag.read().terr().bit_is_clear();
        success.then_some(()).ok_or(Error::TransferError)
    }

    /// Return a mutable reference to the DMAC descriptor that belongs to this
    /// channel. In the case of linked transfers, this will be the first
    /// descriptor in the chain.
    #[inline]
    fn descriptor_mut(&mut self) -> &mut DmacDescriptor {
        // SAFETY this is only safe as long as we read/write to the descriptor
        // belonging to OUR channel. We assume this is the case, as there can only ever
        // exist one (safely created) instance of Self, and we're taking an exclusive
        // reference to Self.
        unsafe {
            let id = ChannelId::<Self>::USIZE;
            &mut *sram::get_descriptor(id)
        }
    }

    /// Fill the first descriptor of a channel into the SRAM descriptor section.
    ///
    /// # Safety
    ///
    /// This method may only be called on a channel which is not actively being
    /// used for transferring data.
    #[inline]
    pub(super) unsafe fn fill_descriptor<Src: Buffer, Dst: Buffer<Beat = Src::Beat>>(
        &mut self,
        source: &mut Src,
        destination: &mut Dst,
        circular: bool,
    ) {
        let descriptor = self.descriptor_mut();

        // Enable support for circular transfers. If circular_xfer is true,
        // we set the address of the "next" block descriptor to actually
        // be the same address as the current block descriptor.
        // Otherwise we set it to NULL, which terminates the transaction.
        let descaddr = if circular {
            // SAFETY This is safe as we are only reading the descriptor's address,
            // and not actually writing any data to it. We also assume the descriptor
            // will never be moved.
            descriptor as *mut _
        } else {
            core::ptr::null_mut()
        };

        write_descriptor(descriptor, source, destination, descaddr);
    }

    /// Add a linked descriptor after the first descriptor in the transfer.
    ///
    /// # Safety
    ///
    /// * This method may only be called on a channel which is not actively
    ///   being used for transferring data.
    ///
    /// * `next` must point to a valid [`DmacDescriptor`], with all the safety
    ///   considerations that entails: the source and destination buffers must
    ///   be valid, have compatible lengths, remain in scope for the entirety of
    ///   the transfer, etc.
    ///
    /// * The pointer in the `descaddr` field of `next`, along with the
    ///   descriptor it points to, etc, must point to a valid [`DmacDescriptor`]
    ///   memory location, or be null. They must not be circular (ie, points to
    ///   itself). Any linked transfer must strictly be a read transaction
    ///   (destination pointer is a byte buffer, source pointer is the SERCOM
    ///   DATA register).
    pub(super) unsafe fn link_next(&mut self, next: *mut DmacDescriptor) {
        self.descriptor_mut().descaddr = next;
    }
}

impl<Id, R> Channel<Id, R>
where
    Id: ChId,
    R: ReadyChannel,
{
    /// Issue a software reset to the channel. This will return the channel to
    /// its startup state
    #[inline]
    pub fn reset(mut self) -> Channel<Id, R::Uninitialized> {
        self._reset_private();
        self.change_status()
    }

    /// Set the FIFO threshold length. The channel will wait until it has
    /// received the selected number of Beats before triggering the Burst
    /// transfer, reducing the DMA transfer latency.
    #[hal_cfg("dmac-d5x")]
    #[inline]
    pub fn fifo_threshold(&mut self, threshold: FifoThreshold) {
        self.regs
            .chctrla
            .modify(|_, w| w.threshold().variant(threshold));
    }

    /// Set burst length for the channel, in number of beats. A burst transfer
    /// is an atomic, uninterruptible operation.
    #[hal_cfg("dmac-d5x")]
    #[inline]
    pub fn burst_length(&mut self, burst_length: BurstLength) {
        self.regs
            .chctrla
            .modify(|_, w| w.burstlen().variant(burst_length));
    }

    /// Start the transfer.
    ///
    /// # Safety
    ///
    /// This function is unsafe because it starts the transfer without changing
    /// the channel status to [`Busy`]. A [`Ready`] channel which is actively
    /// transferring should NEVER be leaked.
    #[inline]
    #[hal_macro_helper]
    pub(super) unsafe fn _start_private(
        &mut self,
        trig_src: TriggerSource,
        trig_act: TriggerAction,
    ) {
        // Configure the trigger source and trigger action
        self.configure_trigger(trig_src, trig_act);
        self._enable_private();

        // If trigger source is DISABLE, manually trigger transfer
        if trig_src == TriggerSource::Disable {
            self._trigger_private();
        }
    }

    #[inline]
    #[hal_macro_helper]
    pub(super) fn configure_trigger(&mut self, trig_src: TriggerSource, trig_act: TriggerAction) {
        // Configure the trigger source and trigger action
        #[hal_cfg(any("dmac-d11", "dmac-d21"))]
        self.regs.chctrlb.modify(|_, w| {
            w.trigsrc().variant(trig_src);
            w.trigact().variant(trig_act)
        });

        #[hal_cfg("dmac-d5x")]
        self.regs.chctrla.modify(|_, w| {
            w.trigsrc().variant(trig_src);
            w.trigact().variant(trig_act)
        });
    }
}

impl<Id: ChId> Channel<Id, Ready> {
    /// Start transfer on channel using the specified trigger source.
    ///
    /// # Return
    ///
    /// A `Channel` with a `Busy` status.
    #[inline]
    pub(crate) fn start(
        mut self,
        trig_src: TriggerSource,
        trig_act: TriggerAction,
    ) -> Channel<Id, Busy> {
        unsafe {
            self._start_private(trig_src, trig_act);
        }
        self.change_status()
    }

    /// Begin a [`Transfer`], without changing the channel's type to [`Busy`].
    ///
    /// This method provides an additional safety guarantee over
    /// [`Self::transfer_unchecked`]; it checks that the buffer lengths are
    /// valid before attempting to start the transfer.
    ///
    /// Also provides support for linked transfers via an optional `&mut
    /// DmacDescriptor`.
    ///
    /// This function guarantees that it will never return [`Err`] if the
    /// transfer has been started.
    ///
    /// # Safety
    ///
    /// * You must ensure that the transfer is completed or stopped before
    ///   returning the [`Channel`]. Doing otherwise breaks type safety, because
    ///   a [`Ready`] channel would still be in the middle of a transfer.
    /// * If the provided `linked_descriptor` is `Some` it must not be dropped
    ///   until the transfer is completed or stopped.
    /// * Additionnally, this function doesn't take `'static` buffers. Again,
    ///   you must guarantee that the returned transfer has completed or has
    ///   been stopped before giving up control of the underlying [`Channel`].
    #[inline]
    #[allow(dead_code)]
    pub(crate) unsafe fn transfer<S, D>(
        &mut self,
        source: &mut S,
        dest: &mut D,
        trig_src: TriggerSource,
        trig_act: TriggerAction,
        linked_descriptor: Option<&mut DmacDescriptor>,
    ) -> Result<(), Error>
    where
        S: Buffer,
        D: Buffer<Beat = S::Beat>,
    {
        Transfer::<Self, BufferPair<S, D>>::check_buffer_pair(source, dest)?;
        self.transfer_unchecked(source, dest, trig_src, trig_act, linked_descriptor);
        Ok(())
    }

    /// Begin a transfer, without changing the channel's type to [`Busy`].
    ///
    /// Also provides support for linked transfers via an optional `&mut
    /// DmacDescriptor`.
    ///
    /// # Safety
    ///
    /// * This method does not check that the two provided buffers have
    ///   compatible lengths. You must guarantee that:
    ///   - Either `source` or `dest` has a buffer length of 1, or
    ///   - Both buffers have the same length.
    /// * You must ensure that the transfer is completed or stopped before
    ///   returning the [`Channel`]. Doing otherwise breaks type safety, because
    ///   a [`Ready`] channel would still be in the middle of a transfer.
    /// * If the provided `linked_descriptor` is `Some` it must not be dropped
    ///   until the transfer is completed or stopped.
    /// * Additionnally, this function doesn't take `'static` buffers. Again,
    ///   you must guarantee that the returned transfer has completed or has
    ///   been stopped before giving up control of the underlying [`Channel`].
    #[inline]
    pub(crate) unsafe fn transfer_unchecked<S, D>(
        &mut self,
        source: &mut S,
        dest: &mut D,
        trig_src: TriggerSource,
        trig_act: TriggerAction,
        linked_descriptor: Option<&mut DmacDescriptor>,
    ) where
        S: Buffer,
        D: Buffer<Beat = S::Beat>,
    {
        self.fill_descriptor(source, dest, false);

        if let Some(next) = linked_descriptor {
            self.link_next(next as *mut _);
        }

        self.configure_trigger(trig_src, trig_act);
        self._enable_private();

        if trig_src == TriggerSource::Disable {
            self._trigger_private();
        }
    }
}

/// These methods may only be used on a `Busy` DMA channel
impl<Id: ChId> Channel<Id, Busy> {
    /// Issue a software trigger to the channel
    #[inline]
    pub(crate) fn software_trigger(&mut self) {
        self._trigger_private();
    }

    /// Stop transfer on channel whether or not the transfer has completed, and
    /// return the resources it holds.
    ///
    /// # Return
    ///
    /// A `Channel` with a `Ready` status, ready to be reused by a new
    /// [`Transfer`](super::transfer::Transfer)
    #[inline]
    pub(crate) fn free(mut self) -> Channel<Id, Ready> {
        self.stop();
        self.change_status()
    }

    /// Restart transfer using previously-configured trigger source and action
    #[inline]
    pub(crate) fn restart(&mut self) {
        self._enable_private();
    }
}

impl<Id: ChId> From<Channel<Id, Ready>> for Channel<Id, Uninitialized> {
    fn from(mut item: Channel<Id, Ready>) -> Self {
        item._reset_private();
        item.change_status()
    }
}

#[cfg(feature = "async")]
impl<Id: ChId> Channel<Id, ReadyFuture> {
    /// Begin DMA transfer using `async` operation.
    ///
    /// If [`TriggerSource::Disable`] is used, a software
    /// trigger will be issued to the DMA channel to launch the transfer. It
    /// is therefore not necessary, in most cases, to manually issue a
    /// software trigger to the channel.
    ///
    /// # Safety
    ///
    /// In `async` mode, a transfer does NOT require `'static` source and
    /// destination buffers. This, in theory, makes
    /// [`transfer_future`](Channel::transfer_future) an `unsafe` function,
    /// although it is marked as safe for better ergonomics.
    ///
    /// This means that, as an user, you **must** ensure that the [`Future`]
    /// returned by this function may never be forgotten through [`forget`] or
    /// by wrapping it with a [`ManuallyDrop`].
    ///
    /// The returned future implements [`Drop`] and will automatically stop any
    /// ongoing transfers to guarantee that the memory occupied by the
    /// now-dropped buffers may not be corrupted by running transfers. This
    /// also means that should you [`forget`] this [`Future`] after its
    /// first [`poll`] call, the transfer will keep running, ruining the
    /// now-reclaimed memory, as well as the rest of your day.
    ///
    /// * `await`ing is fine: the [`Future`] will run to completion.
    /// * Dropping an incomplete transfer is also fine. Dropping can happen, for
    ///   example, if the transfer doesn't complete before a timeout expires.
    ///
    /// [`forget`]: core::mem::forget
    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
    /// [`Future`]: core::future::Future
    /// [`poll`]: core::future::Future::poll
    #[inline]
    pub async fn transfer_future<S, D>(
        &mut self,
        mut source: S,
        mut dest: D,
        trig_src: TriggerSource,
        trig_act: TriggerAction,
    ) -> Result<(), super::Error>
    where
        S: super::Buffer,
        D: super::Buffer<Beat = S::Beat>,
    {
        unsafe {
            self.transfer_future_linked(&mut source, &mut dest, trig_src, trig_act, None)
                .await
        }
    }

    /// Begin an async transfer, without changing the channel's type to
    /// [`Busy`].
    ///
    /// Also provides support for linked transfers via an optional `&mut
    /// DmacDescriptor`.
    ///
    /// # Safety
    ///
    /// * This method does not check that the two provided buffers have
    ///   compatible lengths. You must guarantee that:
    ///   - Either `source` or `dest` has a buffer length of 1, or
    ///   - Both buffers have the same length.
    /// * You must ensure that the transfer is completed or stopped before
    ///   returning the [`Channel`]. Doing otherwise breaks type safety, because
    ///   a [`ReadyFuture`] channel would still be in the middle of a transfer.
    /// * If the provided `linked_descriptor` is `Some` it must not be dropped
    ///   until the transfer is completed or stopped.
    /// * Additionnally, this function doesn't take `'static` buffers. Again,
    ///   you must guarantee that the returned transfer has completed or has
    ///   been stopped before giving up control of the underlying [`Channel`].
    pub(crate) async unsafe fn transfer_future_linked<S, D>(
        &mut self,
        source: &mut S,
        dest: &mut D,
        trig_src: TriggerSource,
        trig_act: TriggerAction,
        linked_descriptor: Option<&mut DmacDescriptor>,
    ) -> Result<(), super::Error>
    where
        S: super::Buffer,
        D: super::Buffer<Beat = S::Beat>,
    {
        super::Transfer::<Self, super::transfer::BufferPair<S, D>>::check_buffer_pair(
            source, dest,
        )?;
        unsafe {
            self.fill_descriptor(source, dest, false);
            if let Some(next) = linked_descriptor {
                self.link_next(next as *mut _);
            }
        }

        self.disable_interrupts(
            InterruptFlags::new()
                .with_susp(true)
                .with_tcmpl(true)
                .with_terr(true),
        );

        self.configure_trigger(trig_src, trig_act);

        transfer_future::TransferFuture::new(self, trig_src).await;

        // No need to defensively disable channel here; it's automatically stopped when
        // TransferFuture is dropped. Even though `stop()` is implicitly called
        // through TransferFuture::drop, it *absolutely* must be called before
        // this function is returned, because it emits the compiler fence which ensures
        // memory operations aren't reordered beyond the DMA transfer's bounds.

        // TODO currently this will always return Ok(()) since we unconditionally clear
        // ERROR
        self.xfer_success()
    }
}

#[cfg(feature = "async")]
mod transfer_future {
    use super::*;

    /// [`Future`](core::future::Future) which starts, then waits on a DMA
    /// transfer.
    ///
    /// This implementation is a standalone struct instead of using
    /// [`poll_fn`](core::future::poll_fn), because we want to implement
    /// [`Drop`] for the future returned by the
    /// [`transfer_future`](super::Channel::transfer_future) method. This way we
    /// can stop transfers when they are dropped, thus avoiding undefined
    /// behaviour.
    pub(super) struct TransferFuture<'a, Id: ChId> {
        triggered: bool,
        trig_src: TriggerSource,
        chan: &'a mut Channel<Id, ReadyFuture>,
    }

    impl<'a, Id: ChId> TransferFuture<'a, Id> {
        pub(super) fn new(chan: &'a mut Channel<Id, ReadyFuture>, trig_src: TriggerSource) -> Self {
            Self {
                triggered: false,
                trig_src,
                chan,
            }
        }
    }

    impl<Id: ChId> Drop for TransferFuture<'_, Id> {
        fn drop(&mut self) {
            self.chan.stop();
        }
    }

    impl<Id: ChId> core::future::Future for TransferFuture<'_, Id> {
        type Output = ();

        fn poll(
            mut self: core::pin::Pin<&mut Self>,
            cx: &mut core::task::Context<'_>,
        ) -> core::task::Poll<Self::Output> {
            use crate::dmac::waker::WAKERS;
            use core::task::Poll;

            self.chan._enable_private();

            if !self.triggered && self.trig_src == TriggerSource::Disable {
                self.triggered = true;
                self.chan._trigger_private();
            }

            let flags_to_check = InterruptFlags::new().with_tcmpl(true).with_terr(true);

            if self.chan.check_and_clear_interrupts(flags_to_check).tcmpl() {
                return Poll::Ready(());
            }

            WAKERS[Id::USIZE].register(cx.waker());
            self.chan.enable_interrupts(flags_to_check);

            if self.chan.check_and_clear_interrupts(flags_to_check).tcmpl() {
                self.chan.disable_interrupts(flags_to_check);

                return Poll::Ready(());
            }

            Poll::Pending
        }
    }
}

/// Interrupt sources available to a DMA channel
#[bitfield]
#[repr(u8)]
#[derive(Clone, Copy)]
pub struct InterruptFlags {
    /// Transfer error
    pub terr: bool,
    /// Transfer complete
    pub tcmpl: bool,
    /// Transfer suspended
    pub susp: bool,
    #[skip]
    _reserved: B5,
}

impl Default for InterruptFlags {
    fn default() -> Self {
        Self::new()
    }
}

/// Generate a [`DmacDescriptor`], and write it to the provided descriptor
/// reference.
///
/// `next` is the address of the next descriptor (for linked transfers). If
/// it is set to `0`, the transfer will terminate after this descriptor. For
/// circular transfers, set `next` to the descriptor's own address.
///
/// # Safety
///
/// * This method may only be called on a channel which is not actively being
///   used for transferring data.
///
/// * `next` must point to a valid [`DmacDescriptor`], with all the safety
///   considerations that entails: the source and destination buffers must be
///   valid, have compatible lengths, remain in scope for the entirety of the
///   transfer, etc.
///
/// * The pointer in the `descaddr` field of `next`, along with the descriptor
///   it points to, etc, must point to a valid [`DmacDescriptor`] memory
///   location, or be null. They must not be circular (ie, points to itself).
///   Any linked transfer must strictly be a read transaction (destination
///   pointer is a byte buffer, source pointer is the SERCOM DATA register).
#[inline]
pub(crate) unsafe fn write_descriptor<Src: Buffer, Dst: Buffer<Beat = Src::Beat>>(
    descriptor: &mut DmacDescriptor,
    source: &mut Src,
    destination: &mut Dst,
    next: *mut DmacDescriptor,
) {
    let src_ptr = source.dma_ptr();
    let src_inc = source.incrementing();
    let src_len = source.buffer_len();

    let dst_ptr = destination.dma_ptr();
    let dst_inc = destination.incrementing();
    let dst_len = destination.buffer_len();

    let length = core::cmp::max(src_len, dst_len);

    // Channel::xfer_complete() tests the channel enable bit, which indicates
    // that a transfer has completed iff the blockact field in btctrl is not
    // set to SUSPEND.  We implicitly leave blockact set to NOACT here; if
    // that changes Channel::xfer_complete() may need to be modified.
    let btctrl = sram::BlockTransferControl::new()
        .with_srcinc(src_inc)
        .with_dstinc(dst_inc)
        .with_beatsize(Src::Beat::BEATSIZE)
        .with_valid(true);

    *descriptor = DmacDescriptor {
        // Next descriptor address:  0x0 terminates the transaction (no linked list),
        // any other address points to the next block descriptor
        descaddr: next,
        // Source address: address of the last beat transfer source in block
        srcaddr: src_ptr as *mut _,
        // Destination address: address of the last beat transfer destination in block
        dstaddr: dst_ptr as *mut _,
        // Block transfer count: number of beats in block transfer
        btcnt: length as u16,
        // Block transfer control: Datasheet  section 19.8.2.1 p.329
        btctrl,
    };
}