atsamd_hal/peripherals/clock/d11.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
//! Configuring the system clock sources.
//!
//! You will typically need to create an instance of `GenericClockController`
//! before you can set up most of the peripherals on the atsamd21 device.
//! The other types in this module are used to enforce at compile time
//! that the peripherals have been correctly configured.
#![allow(clippy::from_over_into)]
use atsamd_hal_macros::{hal_cfg, hal_macro_helper};
use fugit::RateExtU32;
use crate::pac::gclk::clkctrl::Genselect::*;
use crate::pac::gclk::clkctrl::Idselect::*;
use crate::pac::gclk::genctrl::Srcselect::*;
use crate::pac::{self, Gclk, Nvmctrl, Pm, Sysctrl};
use crate::time::Hertz;
pub type ClockId = pac::gclk::clkctrl::Idselect;
pub type ClockGenId = pac::gclk::clkctrl::Genselect;
pub type ClockSource = pac::gclk::genctrl::Srcselect;
/// Represents a configured clock generator.
///
/// Can be converted into the effective clock frequency.
/// Its primary purpose is to be passed in to methods
/// such as `GenericClockController::tcc2_tc3` to configure
/// the clock for a peripheral.
#[derive(Clone, Copy)]
pub struct GClock {
gclk: ClockGenId,
freq: Hertz,
}
impl Into<Hertz> for GClock {
fn into(self) -> Hertz {
self.freq
}
}
struct State {
gclk: Gclk,
}
impl State {
fn reset_gclk(&mut self) {
self.gclk.ctrl().write(|w| w.swrst().set_bit());
while self.gclk.ctrl().read().swrst().bit_is_set()
|| self.gclk.status().read().syncbusy().bit_is_set()
{}
}
fn wait_for_sync(&mut self) {
while self.gclk.status().read().syncbusy().bit_is_set() {}
}
fn set_gclk_divider_and_source(
&mut self,
gclk: ClockGenId,
divider: u16,
src: ClockSource,
improve_duty_cycle: bool,
) {
// validate the divisor factor based on gclk ID (samd21 see 15.8.5, for samd11
// see 14.8.5)
let mut divisor_invalid = false;
if gclk == Gclk1 {
if divider as u32 >= 2_u32.pow(16) {
divisor_invalid = true;
}
} else if gclk == Gclk2 {
if divider >= 2_u16.pow(5) {
divisor_invalid = true;
}
} else if divider >= 2_u16.pow(8) {
divisor_invalid = true;
}
if divisor_invalid {
panic!("invalid divisor {} for Gclk {}", divider, gclk as u8);
}
self.gclk.gendiv().write(|w| unsafe {
w.id().bits(u8::from(gclk));
w.div().bits(divider)
});
self.wait_for_sync();
self.gclk.genctrl().write(|w| unsafe {
w.id().bits(u8::from(gclk));
w.src().bits(u8::from(src));
// divide directly by divider, rather than exponential
w.divsel().clear_bit();
w.idc().bit(improve_duty_cycle);
w.genen().set_bit();
w.oe().set_bit()
});
self.wait_for_sync();
}
fn enable_clock_generator(&mut self, clock: ClockId, generator: ClockGenId) {
self.gclk.clkctrl().write(|w| unsafe {
w.id().bits(u8::from(clock));
w.gen().bits(u8::from(generator));
w.clken().set_bit()
});
self.wait_for_sync();
}
fn configure_standby(&mut self, gclk: ClockGenId, enable: bool) {
// We must first read out the configuration of genctrl to read/modify/write it.
// To do so, we must do an 8-bit write to GENCTRL.ID (ref 15.6.4.1 Indirect
// Access). 32-bit write did not work.
unsafe {
let genctrl_ptr_u8: *mut u8 = self.gclk.genctrl().as_ptr() as *mut u8;
*genctrl_ptr_u8 = u8::from(gclk);
}
self.wait_for_sync();
// Now that the configuration is loaded, modify it
self.gclk.genctrl().modify(|_, w| w.runstdby().bit(enable));
self.wait_for_sync();
}
}
/// `GenericClockController` encapsulates the Gclk hardware.
///
/// It provides a type safe way to configure the system clocks.
/// Initializing the `GenericClockController` instance configures
/// the system to run at 48Mhz by setting gclk1 as a 32khz source
/// and feeding it into the Dfll48 hardware which in turn drives
/// gclk0 at 48Mhz.
pub struct GenericClockController {
state: State,
gclks: [Hertz; 8],
used_clocks: u64,
}
impl GenericClockController {
/// Reset the clock controller, configure the system to run
/// at 48Mhz and reset various clock dividers.
pub fn with_internal_32kosc(
gclk: Gclk,
pm: &mut Pm,
sysctrl: &mut Sysctrl,
nvmctrl: &mut Nvmctrl,
) -> Self {
Self::new_48mhz_from_32khz(gclk, pm, sysctrl, nvmctrl, false)
}
/// Reset the clock controller, configure the system to run
/// at 48Mhz and reset various clock dividers.
pub fn with_external_32kosc(
gclk: Gclk,
pm: &mut Pm,
sysctrl: &mut Sysctrl,
nvmctrl: &mut Nvmctrl,
) -> Self {
Self::new_48mhz_from_32khz(gclk, pm, sysctrl, nvmctrl, true)
}
#[hal_macro_helper]
fn new_48mhz_from_32khz(
gclk: Gclk,
pm: &mut Pm,
sysctrl: &mut Sysctrl,
nvmctrl: &mut Nvmctrl,
use_external_crystal: bool,
) -> Self {
let mut state = State { gclk };
set_flash_to_half_auto_wait_state(nvmctrl);
#[hal_cfg("clock-d21")]
set_flash_manual_write(nvmctrl);
enable_gclk_apb(pm);
if use_external_crystal {
enable_external_32kosc(sysctrl);
} else {
enable_internal_32kosc(sysctrl);
}
state.reset_gclk();
// Enable a 32khz source -> Gclk1
if use_external_crystal {
state.set_gclk_divider_and_source(Gclk1, 1, Xosc32k, false);
} else {
state.set_gclk_divider_and_source(Gclk1, 1, Osc32k, false);
}
// Feed 32khz into the Dfll48
state.enable_clock_generator(Dfll48, Gclk1);
// Enable the Dfll48
configure_and_enable_dfll48m(sysctrl, use_external_crystal);
// Feed Dfll48 into the main clock
state.set_gclk_divider_and_source(Gclk0, 1, Dfll48m, true);
// We are now running at 48Mhz
// Reset various dividers back to 1
sysctrl.osc8m().modify(|_, w| {
w.presc()._0();
w.ondemand().clear_bit()
});
pm.cpusel().write(|w| w.cpudiv().div1());
pm.apbasel().write(|w| w.apbadiv().div1());
pm.apbbsel().write(|w| w.apbbdiv().div1());
pm.apbcsel().write(|w| w.apbcdiv().div1());
Self {
state,
gclks: [
OSC48M_FREQ,
OSC32K_FREQ,
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
],
used_clocks: 1u64 << u8::from(ClockId::Dfll48),
}
}
/// Reset the clock controller, configure the system to run at 8Mhz from
/// internal 8 MHz RC clock (no PLL) and reset various clock dividers.
#[hal_macro_helper]
pub fn with_internal_8mhz(
gclk: Gclk,
pm: &mut Pm,
sysctrl: &mut Sysctrl,
nvmctrl: &mut Nvmctrl,
) -> Self {
let mut state = State { gclk };
// No wait states needed <= 24 MHz @ 3.3v (ref. 37.12 NVM characteristics)
#[hal_cfg("clock-d21")]
set_flash_manual_write(nvmctrl);
// Get rid of unused warning
#[hal_cfg("clock-d11")]
let _ = nvmctrl;
enable_gclk_apb(pm);
state.reset_gclk();
// Enable 8 MHz source -> Gclk0
state.set_gclk_divider_and_source(Gclk0, 1, Osc8m, false);
// Reset various dividers back to 1
sysctrl.osc8m().modify(|_, w| {
w.presc()._0();
w.ondemand().clear_bit()
});
pm.cpusel().write(|w| w.cpudiv().div1());
pm.apbasel().write(|w| w.apbadiv().div1());
pm.apbbsel().write(|w| w.apbbdiv().div1());
pm.apbcsel().write(|w| w.apbcdiv().div1());
Self {
state,
gclks: [
OSC8M_FREQ,
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
0.Hz(),
],
used_clocks: 0,
}
}
/// Returns a `GClock` for gclk0, the system clock generator at 48Mhz
pub fn gclk0(&mut self) -> GClock {
GClock {
gclk: Gclk0,
freq: self.gclks[0],
}
}
/// Returns a `GClock` for gclk1, the 32Khz oscillator.
pub fn gclk1(&mut self) -> GClock {
GClock {
gclk: Gclk1,
freq: self.gclks[1],
}
}
/// Returns the `GClock` for the specified clock generator.
/// If that clock generator has not yet been configured,
/// returns None.
pub fn get_gclk(&mut self, gclk: ClockGenId) -> Option<GClock> {
let idx = u8::from(gclk) as usize;
if self.gclks[idx].to_Hz() == 0 {
None
} else {
Some(GClock {
gclk,
freq: self.gclks[idx],
})
}
}
/// Configures a clock generator with the specified divider and
/// source.
/// `divider` is a linear divider to be applied to the clock
/// source. While the hardware also supports an exponential divider,
/// this function doesn't expose that functionality at this time.
/// `improve_duty_cycle` is a boolean that, when set to true, enables
/// a 5o/50 duty cycle for odd divider values.
/// Returns a `GClock` for the configured clock generator.
/// Returns `None` if the clock generator has already been configured.
pub fn configure_gclk_divider_and_source(
&mut self,
gclk: ClockGenId,
divider: u16,
src: ClockSource,
improve_duty_cycle: bool,
) -> Option<GClock> {
let idx = u8::from(gclk) as usize;
if self.gclks[idx].to_Hz() != 0 {
return None;
}
self.state
.set_gclk_divider_and_source(gclk, divider, src, improve_duty_cycle);
let freq: Hertz = match src {
Xosc32k | Osc32k | Osculp32k => OSC32K_FREQ,
Gclkgen1 => self.gclks[1],
Osc8m => OSC8M_FREQ,
Dfll48m => OSC48M_FREQ,
Dpll96m => 96.MHz(),
Gclkin | Xosc => unimplemented!(),
};
self.gclks[idx] = freq / divider as u32;
Some(GClock { gclk, freq })
}
/// Enables or disables the given GClk from operation in standby.
pub fn configure_standby(&mut self, gclk: ClockGenId, enable: bool) {
self.state.configure_standby(gclk, enable)
}
}
macro_rules! clock_generator {
($(($id:ident, $Type:ident, $clock:ident),)+) => {
$(
/// A typed token that indicates that the clock for the peripheral(s)
/// with the matching name has been configured.
///
/// The effective clock frequency is available via the `freq` method,
/// or by converting the object into a `Hertz` instance.
/// The peripheral initialization code will typically require passing
/// in this object to prove at compile time that the clock has been
/// correctly initialized.
#[derive(Debug)]
pub struct $Type {
freq: Hertz,
}
impl $Type {
/// Returns the frequency of the configured clock
pub fn freq(&self) -> Hertz {
self.freq
}
}
impl Into<Hertz> for $Type {
fn into(self) -> Hertz {
self.freq
}
}
)+
impl GenericClockController {
$(
/// Configure the clock for peripheral(s) that match the name
/// of this function to use the specific clock generator.
///
/// The `GClock` parameter may be one of default clocks
/// return from `gclk0()`, `gclk1()` or a clock configured
/// by the host application using the `configure_gclk_divider_and_source`
/// method.
/// Returns a typed token that proves that the clock has been configured;
/// the peripheral initialization code will typically require that this
/// clock token be passed in to ensure that the clock has been initialized
/// appropriately.
/// Returns `None` is the specified generic clock has already been
/// configured.
pub fn $id(&mut self, generator: &GClock) -> Option<$Type> {
let bits: u64 = 1<<u8::from(ClockId::$clock) as u64;
if (self.used_clocks & bits) != 0 {
return None;
}
self.used_clocks |= bits;
self.state.enable_clock_generator(ClockId::$clock, generator.gclk);
let freq = self.gclks[u8::from(generator.gclk) as usize];
Some($Type{freq})
}
)+
}
}
}
// samd11
#[hal_cfg("clock-d11")]
clock_generator!(
(tcc0, Tcc0Clock, Tcc0),
(tc1_tc2, Tc1Tc2Clock, Tc1Tc2),
(sercom0_core, Sercom0CoreClock, Sercom0Core),
(sercom1_core, Sercom1CoreClock, Sercom1Core),
(sercom2_core, Sercom2CoreClock, Sercom2Core),
(rtc, RtcClock, Rtc),
(adc, AdcClock, Adc),
(wdt, WdtClock, Wdt),
(eic, EicClock, Eic),
(usb, UsbClock, Usb),
(evsys0, Evsys0Clock, Evsys0),
(evsys1, Evsys1Clock, Evsys1),
(evsys2, Evsys2Clock, Evsys2),
(evsys3, Evsys3Clock, Evsys3),
(evsys4, Evsys4Clock, Evsys4),
(evsys5, Evsys5Clock, Evsys5),
(ac_ana, AcAnaClock, AcAna),
(ac_dig, AcDigClock, AcDig),
(dac, DacClock, Dac),
);
// samd21
#[hal_cfg("clock-d21")]
clock_generator!(
(tcc0_tcc1, Tcc0Tcc1Clock, Tcc0Tcc1),
(tcc2_tc3, Tcc2Tc3Clock, Tcc2Tc3),
(tc4_tc5, Tc4Tc5Clock, Tc4Tc5),
(tc6_tc7, Tc6Tc7Clock, Tc6Tc7),
(sercom0_core, Sercom0CoreClock, Sercom0Core),
(sercom1_core, Sercom1CoreClock, Sercom1Core),
(sercom2_core, Sercom2CoreClock, Sercom2Core),
(sercom3_core, Sercom3CoreClock, Sercom3Core),
(sercom4_core, Sercom4CoreClock, Sercom4Core),
(sercom5_core, Sercom5CoreClock, Sercom5Core),
(usb, UsbClock, Usb),
(rtc, RtcClock, Rtc),
(adc, AdcClock, Adc),
(wdt, WdtClock, Wdt),
(eic, EicClock, Eic),
(evsys0, Evsys0Clock, Evsys0),
(evsys1, Evsys1Clock, Evsys1),
(evsys2, Evsys2Clock, Evsys2),
(evsys3, Evsys3Clock, Evsys3),
(evsys4, Evsys4Clock, Evsys4),
(evsys5, Evsys5Clock, Evsys5),
(evsys6, Evsys6Clock, Evsys6),
(evsys7, Evsys7Clock, Evsys7),
(evsys8, Evsys8Clock, Evsys8),
(evsys9, Evsys9Clock, Evsys9),
(evsys10, Evsys10Clock, Evsys10),
(evsys11, Evsys11Clock, Evsys11),
(ac_ana, AcAnaClock, AcAna),
(ac_dig, AcDigClock, AcDig),
(dac, DacClock, Dac),
(i2s0, I2S0Clock, I2s0),
(i2s1, I2S1Clock, I2s1),
);
/// The frequency of the 48Mhz source.
pub const OSC48M_FREQ: Hertz = Hertz::Hz(48_000_000);
/// The frequency of the 8 Mhz source.
pub const OSC8M_FREQ: Hertz = Hertz::Hz(8_000_000);
/// The frequency of the 32Khz source.
pub const OSC32K_FREQ: Hertz = Hertz::Hz(32_768);
fn set_flash_to_half_auto_wait_state(nvmctrl: &mut Nvmctrl) {
nvmctrl.ctrlb().modify(|_, w| w.rws().half());
}
/// Prevent automatic writes to flash by pointers to flash area
#[hal_cfg("clock-d21")]
fn set_flash_manual_write(nvmctrl: &mut Nvmctrl) {
nvmctrl.ctrlb().modify(|_, w| w.manw().set_bit());
}
fn enable_gclk_apb(pm: &mut Pm) {
pm.apbamask().modify(|_, w| w.gclk_().set_bit());
}
/// Turn on the internal 32hkz oscillator
pub fn enable_internal_32kosc(sysctrl: &mut Sysctrl) {
let calibration = super::calibration::osc32k_cal();
sysctrl.osc32k().write(|w| {
unsafe {
w.ondemand().clear_bit();
w.calib().bits(calibration);
// 6 here means: use 66 cycles of OSC32k to start up this oscillator
w.startup().bits(6);
}
w.en32k().set_bit();
w.enable().set_bit();
w.runstdby().set_bit()
});
while sysctrl.pclksr().read().osc32krdy().bit_is_clear() {
// Wait for the oscillator to stabilize
}
}
/// Turn on the external 32hkz oscillator
pub fn enable_external_32kosc(sysctrl: &mut Sysctrl) {
sysctrl.xosc32k().modify(|_, w| {
unsafe {
// 6 here means: use 64k cycles of OSCULP32k to start up this oscillator
w.startup().bits(6);
}
w.ondemand().clear_bit();
// Enable 32khz output
w.en32k().set_bit();
// Crystal connected to xin32/xout32
w.xtalen().set_bit();
w.runstdby().set_bit()
});
sysctrl.xosc32k().modify(|_, w| w.enable().set_bit());
while sysctrl.pclksr().read().xosc32krdy().bit_is_clear() {
// Wait for the oscillator to stabilize
}
}
fn wait_for_dfllrdy(sysctrl: &mut Sysctrl) {
while sysctrl.pclksr().read().dfllrdy().bit_is_clear() {}
}
/// Configure the dfll48m to operate at 48Mhz
#[hal_macro_helper]
fn configure_and_enable_dfll48m(sysctrl: &mut Sysctrl, use_external_crystal: bool) {
// Turn it off while we configure it.
// Note that we need to turn off on-demand mode and
// disable it here, rather than just reseting the ctrl
// register, otherwise our configuration attempt fails.
sysctrl.dfllctrl().write(|w| w.ondemand().clear_bit());
wait_for_dfllrdy(sysctrl);
if use_external_crystal {
sysctrl.dfllmul().write(|w| unsafe {
w.cstep().bits(31);
w.fstep().bits(511);
// scaling factor between the clocks
w.mul().bits(((48_000_000u32 + 32768 / 2) / 32768) as u16)
});
// Turn it on
sysctrl.dfllctrl().write(|w| {
// always on
w.ondemand().clear_bit();
// closed loop mode
w.mode().set_bit();
w.waitlock().set_bit();
// Disable quick lock
w.qldis().set_bit()
});
} else {
// Apply calibration
let coarse = super::calibration::dfll48m_coarse_cal();
let fine = 0x1ff;
sysctrl.dfllval().write(|w| unsafe {
w.coarse().bits(coarse);
w.fine().bits(fine)
});
sysctrl.dfllmul().write(|w| unsafe {
w.cstep().bits(coarse / 4);
w.fstep().bits(10);
// scaling factor for 1 kHz Usb SOF signal
w.mul().bits((48_000_000u32 / 1000) as u16)
});
// Turn it on
sysctrl.dfllctrl().write(|w| {
// always on
w.ondemand().clear_bit();
// closed loop mode
w.mode().set_bit();
// chill cycle disable
w.ccdis().set_bit();
// usb correction
w.usbcrm().set_bit();
// bypass coarse lock (have calibration data)
w.bplckc().set_bit()
});
}
wait_for_dfllrdy(sysctrl);
// and finally enable it!
sysctrl.dfllctrl().modify(|_, w| w.enable().set_bit());
#[hal_cfg("clock-d21")]
if use_external_crystal {
// wait for lock
while sysctrl.pclksr().read().dflllckc().bit_is_clear()
|| sysctrl.pclksr().read().dflllckf().bit_is_clear()
{}
}
wait_for_dfllrdy(sysctrl);
}