atsamd_hal/dmac/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
//! # Direct Memory Access Controller
//!
//! This library provides a type-safe API with compile-time guarantees
//! that the peripheral and individual DMA channels are correctly configured
//! before launching a DMA transfer.
//!
//! This module currently supports most basic DMA
//! functions, including memory-to-memory,
//! memory-to-peripheral, peripheral-to-memory,
//! and peripheral-to-peripheral transfers.
//! One-shot and circular transfers are supported. More complex
//! transfer configurations, including multi-buffer
//! (linked-list descriptor) transfers, are not currently supported.
//!
//! Transfers are supported for `i8`, `u8`, `i16`, `u16`, `i32`, `u32` and `f32`
//! beat sizes.
//!
//! # Enabling DMA support
//!
//! You must enable the `dma` feature in your board support crate
//! or final executable.
//!
//! Add this to your `Cargo.toml`:
//! ```
//! [features]
//! dma = ["atsamd-hal/dma"]
//! ```
//!
//! # Channels and RAM
//!
//! Using DMA channels require a certain amount of RAM - 32 bytes per channel,
//! to be exact. RAM will be not allocated unless the `dma` feature is enabled
//! for the HAL. By default, half the channels available on the chip are
//! enabled. If you need all DMA channels enabled, enable the `max-channels`
//! feature in your board support crate or final executable.
//!
//! `Cargo.toml`
//! ```
//! [features]
//! dma = ["atsamd-hal/dma"]
//! max-channels = ["dma", "atsamd-hal/max-channels"]
//! ```
//!
//! RAM usage per chip family:
//!
//! * `ATSAMD11` - 3 channels (default): 96 bytes
//!
//! * `ATSAMD11` - 6 channels (max): 192 bytes
//!
//! * `ATSAMD21` - 6 channels (default): 192 bytes
//!
//! * `ATSAMD21`: - 12 channels (max): 384 bytes
//!
//! * `ATSAMD51/ATSAME5x`: - 16 channels (default): 512 bytes
//!
//! * `ATSAMD51/ATSAME5x`: - 32 channels (max): 1024 bytes
//!
//! # Priority levels and Arbitration
//!
//! The DMAC features 4 priority levels. Level 3 has the highest priority
//! and level 0 has the lowest. Each channel can be assigned to one priority
//! level. If two channels with the same priority level are requested to
//! execute a transfer at the same time, the lowest channel number will have
//! priority (in the default, ie static, arbitration scheme).
//!
//! By default, all priority levels are enabled when initializing the DMAC
//! (see [`DmaController::init`]). Levels
//! can be enabled or disabled through the
//! [`DmaController::enable_levels`] and
//! [`DmaController::disable_levels`] methods. These methods must be supplied a
//! [`PriorityLevelMask`].
//!
//! Round-Robin Arbitration can be enabled for multiple priority levels
//! simultaneously by using the
//! [`DmaController::round_robin_arbitration`] and
//! [`DmaController::static_arbitration`] methods. These methods must be
//! supplied a [`RoundRobinMask`]. By default, all priority levels are
//! initialized with a static arbitration scheme. See ATSAMD21 datasheet section
//! 19.6.2.4 for more information.
//!
//! # Interrupts
//!
//! This driver does not use or manage interrupts issued by the DMAC. Individual
//! channels can be configured to generate interrupts when the transfer is
//! complete, an error is detected or the channel is suspended. However, these
//! interrupts will not be triggered unless the DMAC interrupt is unmasked in
//! the NVIC. You will be responsible for clearing the interrupt flags in the
//! ISR.
//!
//! # About static lifetimes
//!
//! The safe API this driver offers requires all buffers (source and
//! destination) to have `'static` lifetimes. This is because
//! [`mem::forget`](core::mem::forget) is a safe API, and therefore relying on
//! [`mem::drop`](core::mem::drop) to terminate or abort a transfer
//! does not guarantee the transfer will be terminated (specifically if
//! [`mem::forget`](core::mem::forget) is called on a `Transfer` containaing
//! a `Channel<Id, Busy>`). This could cause the compiler to reclaim
//! stack-allocated buffers for reuse while the DMAC is still writing to/reading
//! from them! Needless to say that is very unsafe.
//! Refer [here](https://docs.rust-embedded.org/embedonomicon/dma.html#memforget)
//! or [here](https://blog.japaric.io/safe-dma/#leakpocalypse) for more information.
//! You may choose to forgo the `'static` lifetimes by using the unsafe API and
//! the [`Transfer::new_unchecked`](transfer::Transfer::new_unchecked) method.
//!
//! # Unsafe API
//!
//! This driver also offers an `unsafe` API through the
//! [`Transfer::new_unchecked`] method. It
//! does not enforce `'static` lifetimes, and allow using buffers of different
//! lengths. If you choose to use these methods, you MUST prove that
//! a `Transfer` containing a `Channel<Id, Busy>` will NEVER be dropped. You
//! *must* call `wait()` or `stop()` manually on every
//! `Transfer` that has been created using the unsafe API. No destructor or
//! `Drop` implementation is offered for `Transfer`s.
//!
//! Additionally, you can (unsafely) implement your own buffer types through the
//! unsafe [`Buffer`] trait.
//!
//! # Example
//! ```
//! let mut peripherals = Peripherals::take().unwrap();
//! let mut dmac = DmaController::init(peripherals.DMAC, &mut peripherals.PM);
//! // Get individual handles to DMA channels
//! let channels = dmac.split();
//!
//! // Initialize DMA Channel 0
//! let chan0 = channels.0.init(PriorityLevel::LVL0, false, &mut dmac);
//!
//! // Setup a DMA transfer (memory-to-memory -> incrementing source, incrementing destination)
//! // NOTE: buf_src and buf_dest should be either:
//! // &'static mut T, &'static mut [T], or &'static mut [T; N] where T: BeatSize
//! let xfer = Transfer::new(chan0, buf_src, buf_dest, false).begin(
//! &mut dmac,
//! TriggerSource::DISABLE,
//! TriggerAction::BLOCK,
//! );
//!
//! // Wait for transfer to complete and grab resulting buffers
//! let (chan0, buf_src, buf_dest, _) = xfer.wait(&mut dmac);
//!
//! // (Optional) free the [`DmaController`] struct and return the underlying PAC struct
//! channels.0 = chan0.into();
//! let dmac = dmac.free(channels, &mut peripherals.PM);
//! ```
//!
//! # [`Transfer`] recycling
//!
//! A common use-case with DMAC transfers is to trigger a new transfer as soon
//! as the old transfer is completed. To avoid having to
//! [`stop`](Transfer::stop) a [`Transfer`], build a new [`Transfer`] (with
//! [`new`](Transfer::new) or [`new_from_arrays`](Transfer::new_from_arrays))
//! then call [`begin`](Transfer::begin), a [`Transfer::recycle`] method
//! is provided. If the buffer lengths match and the previous transfer is
//! completed, a new transfer will immediately be triggered using the provided
//! source and destination buffers. If the recycling operation is succesful,
//! `Ok((source, destination))` containing the old source and destination
//! buffers is returned. Otherwise, `Err(_)` is returned.
//!
//! ```
//! let new_source = produce_source();
//! let new_destination = produce_destination();
//!
//! // Assume xfer is a `Busy` `Transfer`
//! let (old_source, old_dest) = xfer.recycle(new_source, new_destination).unwrap();
//! ```
//!
//! # Waker operation
//!
//! A [`Transfer`] can also accept a function or closure that will be called on
//! completion of the transaction, acting like a waker.
//!
//! ```
//! fn wake_up() {
//! //...
//! }
//!
//! fn use_waker<const N: usize>(dmac: DmaController,
//! source: &'static mut [u8; N],
//! destination: &'static mut [u8; N]
//! ){
//! let chan0 = dmac.split().0;
//! let xfer = Transfer::new_from_arrays(chan0, source, destination, false)
//! .with_waker(wake_up)
//! .begin();
//! //...
//! }
//! ```
//!
//! ## RTIC example
//!
//! The [RTIC] framework provides a convenient way to store a `static`ally
//! allocated [`Transfer`], so that it can be accessed by both the interrupt
//! handlers and user code. The following example shows how [`Transfer`]s might
//! be used for a series of transactions. It uses features from the latest
//! release of [RTIC], `v0.6-alpha.4`.
//!
//! ```
//! use atsamd_hal::dmac::*;
//!
//! const LENGTH: usize = 50;
//! type TransferBuffer = &'static mut [u8; LENGTH];
//! type Xfer = Transfer<Channel<Ch0, Busy>, TransferBuffer, TransferBuffer>;
//!
//! #[resources]
//! struct Resources {
//! #[lock_free]
//! #[init(None)]
//! opt_xfer: Option<Xfer>,
//!
//! #[lock_free]
//! #[init(None)]
//! opt_channel: Option<Channel<Ch0, Ready>>,
//! }
//!
//! // Note: Assume interrupts have already been enabled for the concerned channel
//! #[task(resources = [opt_xfer, opt_channel])]
//! fn task(ctx: task::Context) {
//! let task::Context { opt_xfer } = ctx;
//! match opt_xfer {
//! Some(xfer) => {
//! if xfer.complete() {
//! let (chan0, _source, dest, _payload) = xfer.take().unwrap().stop();
//! *opt_channel = Some(chan0);
//! consume_data(buf);
//! }
//! }
//! None => {
//! if let Some(chan0) = opt_channel.take() {
//! let source: [u8; 50] = produce_source();
//! let dest: [u8; 50] = produce_destination();
//! let xfer = opt_xfer.get_or_insert(
//! Transfer::new_from_arrays(channel0, source, destination)
//! .with_waker(|| { task::spawn().ok(); })
//! .begin()
//! );
//! }
//! }
//! }
//! }
//!
//! #[task(binds = DMAC, resources = [opt_future])]
//! fn tcmpl(ctx: tcmpl::Context) {
//! ctx.resources.opt_xfer.as_mut().unwrap().callback();
//! }
//! ```
//! [RTIC]: https://rtic.rs
// This is necessary until modular_bitfield fixes all their identity_op warnings
#![allow(clippy::identity_op)]
use atsamd_hal_macros::hal_cfg;
pub use channel::*;
pub use dma_controller::*;
pub use transfer::*;
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Runtime errors that may occur when dealing with DMA transfers.
pub enum Error {
/// Supplied buffers both have lengths > 1 beat, but not equal to each other
///
/// Buffers need to either have the same length in beats, or one should have
/// length == 1. In cases where one buffer is length 1, that buffer will be
/// the source or destination of each beat in the transfer. If both buffers
/// had length >1, but not equal to each other, then it would not be clear
/// how to structure the transfer.
LengthMismatch,
/// Operation is not valid in the current state of the object.
InvalidState,
/// Chip reported an error during transfer
TransferError,
}
impl From<Error> for crate::sercom::spi::Error {
fn from(value: Error) -> Self {
crate::sercom::spi::Error::Dma(value)
}
}
impl From<Error> for crate::sercom::i2c::Error {
fn from(value: Error) -> Self {
crate::sercom::i2c::Error::Dma(value)
}
}
impl From<Error> for crate::sercom::uart::Error {
fn from(value: Error) -> Self {
crate::sercom::uart::Error::Dma(value)
}
}
/// Result for DMAC operations
pub type Result<T> = core::result::Result<T, Error>;
#[cfg(feature = "max-channels")]
#[hal_cfg("dmac-d11")]
#[macro_export]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {6}
};
}
#[cfg(feature = "max-channels")]
#[hal_cfg("dmac-d21")]
#[macro_export]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {12}
};
}
#[cfg(feature = "max-channels")]
#[hal_cfg("dmac-d5x")]
#[macro_export]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {32}
};
}
#[cfg(not(feature = "max-channels"))]
#[hal_cfg("dmac-d11")]
#[macro_export]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {3}
};
}
#[cfg(not(feature = "max-channels"))]
#[hal_cfg("dmac-d21")]
#[macro_export]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {6}
};
}
#[cfg(not(feature = "max-channels"))]
#[hal_cfg("dmac-d5x")]
#[macro_export]
macro_rules! with_num_channels {
($some_macro:ident) => {
$some_macro! {16}
};
}
macro_rules! get {
($literal:literal) => {
$literal
};
}
/// Number of DMA channels used by the driver
pub const NUM_CHANNELS: usize = with_num_channels!(get);
/// DMAC SRAM registers
pub(crate) mod sram {
#![allow(dead_code, unused_braces)]
use core::cell::UnsafeCell;
use super::{BeatSize, NUM_CHANNELS};
use modular_bitfield::{
bitfield,
specifiers::{B2, B3},
};
/// Wrapper type around a [`DmacDescriptor`] to allow interior mutability
/// while keeping them in static storage
#[repr(transparent)]
pub struct DescriptorCell(UnsafeCell<DmacDescriptor>);
impl DescriptorCell {
const fn default() -> Self {
Self(UnsafeCell::new(DmacDescriptor::default()))
}
}
// DescriptorCell is not not *really* sync; we must manually uphold the sync
// guarantees on every access.
unsafe impl Sync for DescriptorCell {}
impl core::ops::Deref for DescriptorCell {
type Target = UnsafeCell<DmacDescriptor>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl core::ops::DerefMut for DescriptorCell {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// Bitfield representing the BTCTRL SRAM DMAC register
#[allow(unused_braces)]
#[bitfield]
#[derive(Clone, Copy)]
#[repr(u16)]
pub(super) struct BlockTransferControl {
pub(super) valid: bool,
pub(super) evosel: B2,
pub(super) blockact: B2,
#[skip]
_reserved: B3,
#[bits = 2]
pub(super) beatsize: BeatSize,
pub(super) srcinc: bool,
pub(super) dstinc: bool,
pub(super) stepsel: bool,
pub(super) stepsize: B3,
}
impl Default for BlockTransferControl {
fn default() -> Self {
Self::new()
}
}
/// Descriptor representing a SRAM register. Datasheet section 19.8.2
#[derive(Clone, Copy)]
#[repr(C, align(16))]
pub struct DmacDescriptor {
pub(super) btctrl: BlockTransferControl,
pub(super) btcnt: u16,
pub(super) srcaddr: *const (),
pub(super) dstaddr: *const (),
pub(super) descaddr: *const DmacDescriptor,
}
impl DmacDescriptor {
pub const fn default() -> Self {
Self {
btctrl: BlockTransferControl::new(),
btcnt: 0,
srcaddr: 0 as *mut _,
dstaddr: 0 as *mut _,
descaddr: 0 as *mut _,
}
}
pub fn next_descriptor(&self) -> *const DmacDescriptor {
self.descaddr
}
pub fn set_next_descriptor(&mut self, next: *mut DmacDescriptor) {
self.descaddr = next;
}
pub fn beat_count(&self) -> u16 {
self.btcnt
}
}
/// Writeback section.
///
/// # Safety
///
/// This variable should never be accessed. The only thing we need
/// to know about it is its starting address, given by
/// [`writeback_addr`].
static WRITEBACK: [DescriptorCell; NUM_CHANNELS] =
[const { DescriptorCell::default() }; NUM_CHANNELS];
// We only ever need to know its starting address.
pub(super) fn writeback_addr() -> *mut DmacDescriptor {
WRITEBACK[0].get()
}
/// Descriptor section.
///
/// # Safety
///
/// All accesses to this variable should be synchronized. Elements of the
/// array should only ever be accessed using [`UnsafeCell::get`]. Any other
/// access method, such as taking a reference to the [`UnsafeCell`] itself,
/// is UB and *will* break DMA transfers - speaking from personal
/// experience.
static DESCRIPTOR_SECTION: [DescriptorCell; NUM_CHANNELS] =
[const { DescriptorCell::default() }; NUM_CHANNELS];
#[inline]
pub(super) fn descriptor_section_addr() -> *mut DmacDescriptor {
DESCRIPTOR_SECTION[0].get()
}
/// Get a mutable pointer to the specified channel's DMAC descriptor
///
/// # Safety
///
/// The caller must manually synchronize any access to the pointee
/// [`DmacDescriptor`].
///
/// Additionnally, if the pointer is used to create references to
/// [`DmacDescriptor`], the caller must guarantee that there will **never**
/// be overlapping `&mut` references (or overlapping `&mut` and `&`
/// references) to the pointee *at any given time*, as it would be
/// instantaneous undefined behaviour.
#[inline]
pub(super) unsafe fn get_descriptor(channel_id: usize) -> *mut DmacDescriptor {
DESCRIPTOR_SECTION[channel_id].get()
}
}
pub mod channel;
pub mod dma_controller;
pub mod transfer;
#[cfg(feature = "async")]
pub mod async_api;
#[cfg(feature = "async")]
pub use async_api::*;
#[cfg(feature = "async")]
mod waker {
use embassy_sync::waitqueue::AtomicWaker;
#[allow(clippy::declare_interior_mutable_const)]
const NEW_WAKER: AtomicWaker = AtomicWaker::new();
pub(super) static WAKERS: [AtomicWaker; with_num_channels!(get)] =
[NEW_WAKER; with_num_channels!(get)];
}