atsamd_hal/dmac/
dma_controller.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//! # Abstractions to setup and use the DMA controller
//!
//! # Initializing
//!
//! The DMAC should be initialized using the
//! [`DmaController::init`] method. It will consume the
//! DMAC object generated by the PAC. By default, all four priority levels
//! will be enabled, but can be selectively enabled/disabled through the
//! [`DmaController::enable_levels`] ansd [`DmaController::disable_levels`]
//! methods.
//!
//! # Splitting Channels
//!
//! Using the [`DmaController::split`] method will return
//! a struct containing handles to individual channels.
//!
//! # Releasing the DMAC
//!
//! Using the [`free`](DmaController::free) method will
//! deinitialize the DMAC and return the underlying PAC object.
#![allow(unused_braces)]

use atsamd_hal_macros::{hal_cfg, hal_macro_helper};
use core::marker::PhantomData;

use modular_bitfield::prelude::*;
use seq_macro::seq;

#[hal_cfg(any("dmac-d11", "dmac-d21"))]
pub use crate::pac::dmac::chctrlb::{
    Lvlselect as PriorityLevel, Trigactselect as TriggerAction, Trigsrcselect as TriggerSource,
};

#[hal_cfg("dmac-d5x")]
pub use crate::pac::dmac::channel::{
    chctrla::{
        Burstlenselect as BurstLength, Thresholdselect as FifoThreshold,
        Trigactselect as TriggerAction, Trigsrcselect as TriggerSource,
    },
    chprilvl::Prilvlselect as PriorityLevel,
};

use super::{
    channel::{Channel, Uninitialized},
    sram,
};
use crate::{
    pac::{Dmac, Pm},
    typelevel::NoneT,
};

/// Trait representing a DMA channel ID
pub trait ChId {
    const U8: u8;
    const USIZE: usize;
}

/// Mask representing which priority levels should be enabled/disabled
#[bitfield]
#[repr(u16)]
pub struct PriorityLevelMask {
    #[skip]
    _reserved: B8,
    /// Level 0
    pub level0: bool,
    /// Level 1
    pub level1: bool,
    /// Level 2
    pub level2: bool,
    /// Level 3
    pub level3: bool,
    #[skip]
    _reserved: B4,
}

impl Default for PriorityLevelMask {
    fn default() -> Self {
        Self::new()
    }
}

/// Mask representing which priority levels should be configured as round-robin
#[bitfield]
#[repr(u32)]
pub struct RoundRobinMask {
    #[skip]
    _reserved: B7,
    /// Level 0
    pub level0: bool,
    #[skip]
    _reserved: B7,
    /// Level 1
    pub level1: bool,
    #[skip]
    _reserved: B7,
    /// Level 2
    pub level2: bool,
    #[skip]
    _reserved: B7,
    /// Level 3
    pub level3: bool,
}

impl Default for RoundRobinMask {
    fn default() -> Self {
        Self::new()
    }
}

macro_rules! define_channels_struct {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            #(
                /// Type alias for a channel number
                pub enum Ch~N {}

                impl ChId for Ch~N {
                    const U8: u8 = N;
                    const USIZE: usize = N;
                }
            )*

            /// Struct generating individual handles to each DMA channel
            pub struct Channels(
                #(
                    pub Channel<Ch~N, Uninitialized>,
                )*
            );
        });
    };
}

with_num_channels!(define_channels_struct);

#[cfg(feature = "async")]
macro_rules! define_channels_struct_future {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            /// Struct generating individual handles to each DMA channel for `async` operation
            pub struct FutureChannels(
                #(
                    pub Channel<Ch~N, super::channel::UninitializedFuture>,
                )*
            );
        });
    };
}

#[cfg(feature = "async")]
with_num_channels!(define_channels_struct_future);

/// Initialized DMA Controller
pub struct DmaController<I = NoneT> {
    dmac: Dmac,
    _irqs: PhantomData<I>,
}

impl DmaController {
    /// Initialize the DMAC and return a DmaController object useable by
    /// [`Transfer`](super::transfer::Transfer)'s. By default, all
    /// priority levels are enabled unless subsequently disabled using the
    /// `level_x_enabled` methods.
    #[inline]
    #[hal_macro_helper]
    pub fn init(mut dmac: Dmac, _pm: &mut Pm) -> Self {
        // ----- Initialize clocking ----- //
        #[hal_cfg(any("dmac-d11", "dmac-d21"))]
        {
            // Enable clocking
            _pm.ahbmask().modify(|_, w| w.dmac_().set_bit());
            _pm.apbbmask().modify(|_, w| w.dmac_().set_bit());
        }

        Self::swreset(&mut dmac);

        // SAFETY:
        //
        // This is safe because we write a whole u32 to 32-bit registers,
        // and the descriptor array addesses will never change since they are static.
        // We just need to ensure the writeback and descriptor_section addresses
        // are valid.
        unsafe {
            dmac.baseaddr()
                .write(|w| w.baseaddr().bits(sram::descriptor_section_addr() as u32));
            dmac.wrbaddr()
                .write(|w| w.wrbaddr().bits(sram::writeback_addr() as u32));
        }

        // ----- Select priority levels ----- //
        dmac.ctrl().modify(|_, w| {
            w.lvlen3().set_bit();
            w.lvlen2().set_bit();
            w.lvlen1().set_bit();
            w.lvlen0().set_bit()
        });

        // Enable DMA controller
        dmac.ctrl().modify(|_, w| w.dmaenable().set_bit());

        Self {
            dmac,
            _irqs: PhantomData,
        }
    }

    /// Release the DMAC and return the register block.
    ///
    /// **Note**: The [`Channels`] struct is consumed by this method. This means
    /// that any [`Channel`] obtained by [`split`](DmaController::split) must be
    /// moved back into the [`Channels`] struct before being able to pass it
    /// into [`free`](DmaController::free).
    #[inline]
    #[hal_macro_helper]
    pub fn free(mut self, _channels: Channels, _pm: &mut Pm) -> Dmac {
        self.dmac.ctrl().modify(|_, w| w.dmaenable().clear_bit());

        Self::swreset(&mut self.dmac);

        #[hal_cfg(any("dmac-d11", "dmac-d21"))]
        {
            // Disable the DMAC clocking
            _pm.apbbmask().modify(|_, w| w.dmac_().clear_bit());
            _pm.ahbmask().modify(|_, w| w.dmac_().clear_bit());
        }

        // Release the DMAC
        self.dmac
    }
}

impl<T> DmaController<T> {
    /// Enable multiple priority levels simultaneously
    #[inline]
    pub fn enable_levels(&mut self, mask: PriorityLevelMask) {
        // SAFETY This is safe because the use of bitfields ensures that only the
        // LVLENx bits are written to. The fact that we are given a mask means we need
        // to do the bit-level setting ourselves.
        let mask: u16 = mask.into();
        unsafe {
            self.dmac.ctrl().modify(|r, w| w.bits(r.bits() | mask));
        }
    }

    /// Disable multiple priority levels simultaneously
    #[inline]
    pub fn disable_levels(&mut self, mask: PriorityLevelMask) {
        // SAFETY This is safe because the use of bitfields ensures that only the
        // LVLENx bits are written to. The fact that we are given a mask means we need
        // to do the bit-level clearing ourselves.
        let mask: u16 = mask.into();
        unsafe {
            self.dmac.ctrl().modify(|r, w| w.bits(r.bits() & !mask));
        }
    }

    /// Enable round-robin arbitration for multiple priority levels
    /// simultaneously
    #[inline]
    pub fn round_robin_arbitration(&mut self, mask: RoundRobinMask) {
        // SAFETY This is safe because the use of bitfields ensures that only the
        // RRLVLENx bits are written to. The fact that we are given a mask means we need
        // to do the bit-level setting ourselves.
        let mask: u32 = mask.into();
        unsafe {
            self.dmac.prictrl0().modify(|r, w| w.bits(r.bits() | mask));
        }
    }

    /// Disable round-robin arbitration (ie, enable static priorities) for
    /// multiple priority levels simultaneously
    #[inline]
    pub fn static_arbitration(&mut self, mask: RoundRobinMask) {
        // SAFETY This is safe because the use of bitfields ensures that only the
        // RRLVLENx bits are written to. The fact that we are given a mask means we need
        // to do the bit-level clearing ourselves.
        let mask: u32 = mask.into();
        unsafe {
            self.dmac.prictrl0().modify(|r, w| w.bits(r.bits() & !mask));
        }
    }

    /// Use the [`DmaController`] in async mode. You are required to provide the
    /// struct created by the
    /// [`bind_interrupts`](crate::bind_interrupts) macro to prove
    /// that the interrupt sources have been correctly configured. This function
    /// will automatically enable the relevant NVIC interrupt sources. However,
    /// you are required to configure the desired interrupt priorities prior to
    /// calling this method. Consult [`crate::async_hal::interrupts`]
    /// module-level documentation for more information.
    /// [`bind_interrupts`](crate::bind_interrupts).
    #[cfg(feature = "async")]
    #[inline]
    pub fn into_future<I>(self, _interrupts: I) -> DmaController<I>
    where
        I: crate::async_hal::interrupts::Binding<
            crate::async_hal::interrupts::DMAC,
            super::async_api::InterruptHandler,
        >,
    {
        use crate::async_hal::interrupts::{InterruptSource, DMAC};

        DMAC::unpend();
        unsafe { DMAC::enable() };

        DmaController {
            dmac: self.dmac,
            _irqs: PhantomData,
        }
    }

    /// Issue a software reset to the DMAC and wait for reset to complete
    #[inline]
    fn swreset(dmac: &mut Dmac) {
        dmac.ctrl().modify(|_, w| w.swrst().set_bit());
        while dmac.ctrl().read().swrst().bit_is_set() {}
    }
}

#[cfg(feature = "async")]
impl<I> DmaController<I>
where
    I: crate::async_hal::interrupts::Binding<
        crate::async_hal::interrupts::DMAC,
        super::async_api::InterruptHandler,
    >,
{
    /// Release the DMAC and return the register block.
    ///
    /// **Note**: The [`Channels`] struct is consumed by this method. This means
    /// that any [`Channel`] obtained by [`split`](DmaController::split) must be
    /// moved back into the [`Channels`] struct before being able to pass it
    /// into [`free`](DmaController::free).
    #[inline]
    #[hal_macro_helper]
    pub fn free(mut self, _channels: FutureChannels, _pm: &mut Pm) -> Dmac {
        self.dmac.ctrl().modify(|_, w| w.dmaenable().clear_bit());

        Self::swreset(&mut self.dmac);

        #[hal_cfg(any("dmac-d11", "dmac-d21"))]
        {
            // Disable the DMAC clocking
            _pm.apbbmask().modify(|_, w| w.dmac_().clear_bit());
            _pm.ahbmask().modify(|_, w| w.dmac_().clear_bit());
        }

        // Release the DMAC
        self.dmac
    }
}

macro_rules! define_split {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            /// Split the DMAC into individual channels
            #[inline]
            pub fn split(&mut self) -> Channels {
                Channels(
                    #(
                        crate::dmac::channel::new_chan(core::marker::PhantomData),
                    )*
                )
            }
        });
    };
}

impl DmaController {
    with_num_channels!(define_split);
}

#[cfg(feature = "async")]
macro_rules! define_split_future {
    ($num_channels:literal) => {
        seq!(N in 0..$num_channels {
            /// Split the DMAC into individual channels
            #[inline]
            pub fn split(&mut self) -> FutureChannels {
                FutureChannels(
                    #(
                        crate::dmac::channel::new_chan_future(core::marker::PhantomData),
                    )*
                )
            }
        });
    };
}

#[cfg(feature = "async")]
impl<I> DmaController<I>
where
    I: crate::async_hal::interrupts::Binding<
        crate::async_hal::interrupts::DMAC,
        super::async_api::InterruptHandler,
    >,
{
    with_num_channels!(define_split_future);
}