atsamd_hal/dmac/dma_controller.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
//! # Abstractions to setup and use the DMA controller
//!
//! # Initializing
//!
//! The DMAC should be initialized using the
//! [`DmaController::init`] method. It will consume the
//! DMAC object generated by the PAC. By default, all four priority levels
//! will be enabled, but can be selectively enabled/disabled through the
//! [`DmaController::enable_levels`] ansd [`DmaController::disable_levels`]
//! methods.
//!
//! # Splitting Channels
//!
//! Using the [`DmaController::split`] method will return
//! a struct containing handles to individual channels.
//!
//! # Releasing the DMAC
//!
//! Using the [`free`](DmaController::free) method will
//! deinitialize the DMAC and return the underlying PAC object.
#![allow(unused_braces)]
use atsamd_hal_macros::{hal_cfg, hal_macro_helper};
use core::marker::PhantomData;
use modular_bitfield::prelude::*;
use seq_macro::seq;
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
pub use crate::pac::dmac::chctrlb::{
Lvlselect as PriorityLevel, Trigactselect as TriggerAction, Trigsrcselect as TriggerSource,
};
#[hal_cfg("dmac-d5x")]
pub use crate::pac::dmac::channel::{
chctrla::{
Burstlenselect as BurstLength, Thresholdselect as FifoThreshold,
Trigactselect as TriggerAction, Trigsrcselect as TriggerSource,
},
chprilvl::Prilvlselect as PriorityLevel,
};
use super::{
channel::{Channel, Uninitialized},
sram,
};
use crate::{
pac::{Dmac, Pm},
typelevel::NoneT,
};
/// Trait representing a DMA channel ID
pub trait ChId {
const U8: u8;
const USIZE: usize;
}
/// Mask representing which priority levels should be enabled/disabled
#[bitfield]
#[repr(u16)]
pub struct PriorityLevelMask {
#[skip]
_reserved: B8,
/// Level 0
pub level0: bool,
/// Level 1
pub level1: bool,
/// Level 2
pub level2: bool,
/// Level 3
pub level3: bool,
#[skip]
_reserved: B4,
}
impl Default for PriorityLevelMask {
fn default() -> Self {
Self::new()
}
}
/// Mask representing which priority levels should be configured as round-robin
#[bitfield]
#[repr(u32)]
pub struct RoundRobinMask {
#[skip]
_reserved: B7,
/// Level 0
pub level0: bool,
#[skip]
_reserved: B7,
/// Level 1
pub level1: bool,
#[skip]
_reserved: B7,
/// Level 2
pub level2: bool,
#[skip]
_reserved: B7,
/// Level 3
pub level3: bool,
}
impl Default for RoundRobinMask {
fn default() -> Self {
Self::new()
}
}
macro_rules! define_channels_struct {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
#(
/// Type alias for a channel number
pub enum Ch~N {}
impl ChId for Ch~N {
const U8: u8 = N;
const USIZE: usize = N;
}
)*
/// Struct generating individual handles to each DMA channel
pub struct Channels(
#(
pub Channel<Ch~N, Uninitialized>,
)*
);
});
};
}
with_num_channels!(define_channels_struct);
#[cfg(feature = "async")]
macro_rules! define_channels_struct_future {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
/// Struct generating individual handles to each DMA channel for `async` operation
pub struct FutureChannels(
#(
pub Channel<Ch~N, super::channel::UninitializedFuture>,
)*
);
});
};
}
#[cfg(feature = "async")]
with_num_channels!(define_channels_struct_future);
/// Initialized DMA Controller
pub struct DmaController<I = NoneT> {
dmac: Dmac,
_irqs: PhantomData<I>,
}
impl DmaController {
/// Initialize the DMAC and return a DmaController object useable by
/// [`Transfer`](super::transfer::Transfer)'s. By default, all
/// priority levels are enabled unless subsequently disabled using the
/// `level_x_enabled` methods.
#[inline]
#[hal_macro_helper]
pub fn init(mut dmac: Dmac, _pm: &mut Pm) -> Self {
// ----- Initialize clocking ----- //
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
{
// Enable clocking
_pm.ahbmask().modify(|_, w| w.dmac_().set_bit());
_pm.apbbmask().modify(|_, w| w.dmac_().set_bit());
}
Self::swreset(&mut dmac);
// SAFETY:
//
// This is safe because we write a whole u32 to 32-bit registers,
// and the descriptor array addesses will never change since they are static.
// We just need to ensure the writeback and descriptor_section addresses
// are valid.
unsafe {
dmac.baseaddr()
.write(|w| w.baseaddr().bits(sram::descriptor_section_addr() as u32));
dmac.wrbaddr()
.write(|w| w.wrbaddr().bits(sram::writeback_addr() as u32));
}
// ----- Select priority levels ----- //
dmac.ctrl().modify(|_, w| {
w.lvlen3().set_bit();
w.lvlen2().set_bit();
w.lvlen1().set_bit();
w.lvlen0().set_bit()
});
// Enable DMA controller
dmac.ctrl().modify(|_, w| w.dmaenable().set_bit());
Self {
dmac,
_irqs: PhantomData,
}
}
/// Release the DMAC and return the register block.
///
/// **Note**: The [`Channels`] struct is consumed by this method. This means
/// that any [`Channel`] obtained by [`split`](DmaController::split) must be
/// moved back into the [`Channels`] struct before being able to pass it
/// into [`free`](DmaController::free).
#[inline]
#[hal_macro_helper]
pub fn free(mut self, _channels: Channels, _pm: &mut Pm) -> Dmac {
self.dmac.ctrl().modify(|_, w| w.dmaenable().clear_bit());
Self::swreset(&mut self.dmac);
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
{
// Disable the DMAC clocking
_pm.apbbmask().modify(|_, w| w.dmac_().clear_bit());
_pm.ahbmask().modify(|_, w| w.dmac_().clear_bit());
}
// Release the DMAC
self.dmac
}
}
impl<T> DmaController<T> {
/// Enable multiple priority levels simultaneously
#[inline]
pub fn enable_levels(&mut self, mask: PriorityLevelMask) {
// SAFETY This is safe because the use of bitfields ensures that only the
// LVLENx bits are written to. The fact that we are given a mask means we need
// to do the bit-level setting ourselves.
let mask: u16 = mask.into();
unsafe {
self.dmac.ctrl().modify(|r, w| w.bits(r.bits() | mask));
}
}
/// Disable multiple priority levels simultaneously
#[inline]
pub fn disable_levels(&mut self, mask: PriorityLevelMask) {
// SAFETY This is safe because the use of bitfields ensures that only the
// LVLENx bits are written to. The fact that we are given a mask means we need
// to do the bit-level clearing ourselves.
let mask: u16 = mask.into();
unsafe {
self.dmac.ctrl().modify(|r, w| w.bits(r.bits() & !mask));
}
}
/// Enable round-robin arbitration for multiple priority levels
/// simultaneously
#[inline]
pub fn round_robin_arbitration(&mut self, mask: RoundRobinMask) {
// SAFETY This is safe because the use of bitfields ensures that only the
// RRLVLENx bits are written to. The fact that we are given a mask means we need
// to do the bit-level setting ourselves.
let mask: u32 = mask.into();
unsafe {
self.dmac.prictrl0().modify(|r, w| w.bits(r.bits() | mask));
}
}
/// Disable round-robin arbitration (ie, enable static priorities) for
/// multiple priority levels simultaneously
#[inline]
pub fn static_arbitration(&mut self, mask: RoundRobinMask) {
// SAFETY This is safe because the use of bitfields ensures that only the
// RRLVLENx bits are written to. The fact that we are given a mask means we need
// to do the bit-level clearing ourselves.
let mask: u32 = mask.into();
unsafe {
self.dmac.prictrl0().modify(|r, w| w.bits(r.bits() & !mask));
}
}
/// Use the [`DmaController`] in async mode. You are required to provide the
/// struct created by the
/// [`bind_interrupts`](crate::bind_interrupts) macro to prove
/// that the interrupt sources have been correctly configured. This function
/// will automatically enable the relevant NVIC interrupt sources. However,
/// you are required to configure the desired interrupt priorities prior to
/// calling this method. Consult [`crate::async_hal::interrupts`]
/// module-level documentation for more information.
/// [`bind_interrupts`](crate::bind_interrupts).
#[cfg(feature = "async")]
#[inline]
pub fn into_future<I>(self, _interrupts: I) -> DmaController<I>
where
I: crate::async_hal::interrupts::Binding<
crate::async_hal::interrupts::DMAC,
super::async_api::InterruptHandler,
>,
{
use crate::async_hal::interrupts::{InterruptSource, DMAC};
DMAC::unpend();
unsafe { DMAC::enable() };
DmaController {
dmac: self.dmac,
_irqs: PhantomData,
}
}
/// Issue a software reset to the DMAC and wait for reset to complete
#[inline]
fn swreset(dmac: &mut Dmac) {
dmac.ctrl().modify(|_, w| w.swrst().set_bit());
while dmac.ctrl().read().swrst().bit_is_set() {}
}
}
#[cfg(feature = "async")]
impl<I> DmaController<I>
where
I: crate::async_hal::interrupts::Binding<
crate::async_hal::interrupts::DMAC,
super::async_api::InterruptHandler,
>,
{
/// Release the DMAC and return the register block.
///
/// **Note**: The [`Channels`] struct is consumed by this method. This means
/// that any [`Channel`] obtained by [`split`](DmaController::split) must be
/// moved back into the [`Channels`] struct before being able to pass it
/// into [`free`](DmaController::free).
#[inline]
#[hal_macro_helper]
pub fn free(mut self, _channels: FutureChannels, _pm: &mut Pm) -> Dmac {
self.dmac.ctrl().modify(|_, w| w.dmaenable().clear_bit());
Self::swreset(&mut self.dmac);
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
{
// Disable the DMAC clocking
_pm.apbbmask().modify(|_, w| w.dmac_().clear_bit());
_pm.ahbmask().modify(|_, w| w.dmac_().clear_bit());
}
// Release the DMAC
self.dmac
}
}
macro_rules! define_split {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
/// Split the DMAC into individual channels
#[inline]
pub fn split(&mut self) -> Channels {
Channels(
#(
crate::dmac::channel::new_chan(core::marker::PhantomData),
)*
)
}
});
};
}
impl DmaController {
with_num_channels!(define_split);
}
#[cfg(feature = "async")]
macro_rules! define_split_future {
($num_channels:literal) => {
seq!(N in 0..$num_channels {
/// Split the DMAC into individual channels
#[inline]
pub fn split(&mut self) -> FutureChannels {
FutureChannels(
#(
crate::dmac::channel::new_chan_future(core::marker::PhantomData),
)*
)
}
});
};
}
#[cfg(feature = "async")]
impl<I> DmaController<I>
where
I: crate::async_hal::interrupts::Binding<
crate::async_hal::interrupts::DMAC,
super::async_api::InterruptHandler,
>,
{
with_num_channels!(define_split_future);
}