atsamd_hal/sercom/spi/impl_ehal/dma.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
//! `embedded-hal` and `embedded-io` implementations for DMA-enabled [`Spi`]s
use num_traits::{AsPrimitive, PrimInt};
use crate::dmac::{channel, sram::DmacDescriptor, AnyChannel, Beat, Buffer, Ready};
use crate::ehal::spi::SpiBus;
use crate::sercom::dma::{
read_dma, read_dma_linked, write_dma, write_dma_linked, SercomPtr, SharedSliceBuffer,
SinkSourceBuffer,
};
use super::{
Capability, Config, DataWidth, Duplex, Error, MasterMode, OpMode, Receive, Sercom, Size, Slave,
Spi, Transmit, ValidConfig, ValidPads, Word,
};
impl<P, M, Z, D, R, T> Spi<Config<P, M, Z>, D, R, T>
where
P: ValidPads,
M: OpMode,
Z: Size,
Config<P, M, Z>: ValidConfig,
D: Capability,
Z::Word: Beat,
{
#[inline]
pub(in super::super) fn sercom_ptr(&self) -> SercomPtr<Z::Word> {
SercomPtr(self.config.regs.spi().data().as_ptr() as *mut _)
}
}
// Write implementation is the same for Master and Slave SPIs.
impl<P, M, Z, D, R, T, S> Spi<Config<P, M, Z>, D, R, T>
where
P: ValidPads,
M: OpMode,
Z: Size + 'static,
Config<P, M, Z>: ValidConfig<Sercom = S>,
D: Transmit,
S: Sercom,
Z::Word: PrimInt + AsPrimitive<DataWidth> + Beat,
DataWidth: AsPrimitive<Z::Word>,
T: AnyChannel<Status = Ready>,
{
pub(super) fn write_dma(&mut self, buf: &[Z::Word]) -> Result<usize, Error> {
if buf.is_empty() {
return Ok(0);
}
// Ignore RX buffer overflows by disabling the receiver
self.config.as_mut().regs.rx_disable();
let sercom_ptr = self.sercom_ptr();
let tx = self._tx_channel.as_mut();
let mut words = crate::sercom::dma::SharedSliceBuffer::from_slice(buf);
// SAFETY: We make sure that any DMA transfer is complete or stopped before
// returning. The order of operations is important; the RX transfer
// must be ready to receive before the TX transfer is initiated.
unsafe {
crate::sercom::dma::write_dma::<_, _, S>(tx, sercom_ptr, &mut words);
}
while !tx.xfer_complete() {
core::hint::spin_loop();
}
// Defensively disable channels
tx.stop();
// Reenable receiver only if necessary
if D::RX_ENABLE {
self.config.as_mut().regs.rx_enable();
}
self._tx_channel.as_mut().xfer_success()?;
Ok(buf.len())
}
}
impl<P, M, S, C, D, R, T> Spi<Config<P, M, C>, D, R, T>
where
Config<P, M, C>: ValidConfig<Sercom = S>,
S: Sercom,
P: ValidPads,
M: MasterMode,
C: Size + 'static,
C::Word: PrimInt + AsPrimitive<DataWidth> + Beat,
DataWidth: AsPrimitive<C::Word>,
D: Capability,
R: AnyChannel<Status = Ready>,
T: AnyChannel<Status = Ready>,
{
#[inline]
fn transfer_blocking<Source: Buffer<Beat = C::Word>, Dest: Buffer<Beat = C::Word>>(
&mut self,
dest: &mut Dest,
source: &mut Source,
) -> Result<(), Error> {
let sercom_ptr = self.sercom_ptr();
let rx = self._rx_channel.as_mut();
let tx = self._tx_channel.as_mut();
// SAFETY: We make sure that any DMA transfer is complete or stopped before
// returning. The order of operations is important; the RX transfer
// must be ready to receive before the TX transfer is initiated.
unsafe {
read_dma::<_, _, S>(rx, sercom_ptr.clone(), dest);
write_dma::<_, _, S>(tx, sercom_ptr, source);
}
while !(rx.xfer_complete() && tx.xfer_complete()) {
core::hint::spin_loop();
}
// Defensively disable channels
tx.stop();
rx.stop();
// Check for overflows or DMA errors
self.read_status().check_bus_error()?;
self._rx_channel
.as_mut()
.xfer_success()
.and(self._tx_channel.as_mut().xfer_success())?;
Ok(())
}
#[inline]
pub(super) fn read_dma_master(&mut self, mut words: &mut [C::Word]) -> Result<(), Error> {
if words.is_empty() {
return Ok(());
}
let mut source_word = self.config.nop_word.as_();
let mut source = SinkSourceBuffer::new(&mut source_word, words.len());
self.transfer_blocking(&mut words, &mut source)
}
}
/// [`SpiBus`] implementation for [`Spi`], using DMA transfers.
impl<P, M, S, C, R, T> SpiBus<Word<C>> for Spi<Config<P, M, C>, Duplex, R, T>
where
Config<P, M, C>: ValidConfig<Sercom = S>,
S: Sercom,
P: ValidPads,
M: MasterMode,
C: Size + 'static,
C::Word: PrimInt + AsPrimitive<DataWidth> + Beat,
DataWidth: AsPrimitive<C::Word>,
R: AnyChannel<Status = Ready>,
T: AnyChannel<Status = Ready>,
{
#[inline]
fn read(&mut self, words: &mut [C::Word]) -> Result<(), Self::Error> {
self.read_dma_master(words)
}
#[inline]
fn write(&mut self, words: &[C::Word]) -> Result<(), Self::Error> {
self.write_dma(words)?;
Ok(())
}
#[inline]
fn transfer(&mut self, mut read: &mut [C::Word], write: &[C::Word]) -> Result<(), Self::Error> {
use core::cmp::Ordering;
// No work to do here
if write.is_empty() && read.is_empty() {
return Ok(());
}
// Handle 0-length special cases
if write.is_empty() {
return self.read_dma_master(read);
} else if read.is_empty() {
self.write_dma(write)?;
return Ok(());
}
// Reserve space for a DMAC SRAM descriptor if we need to make a linked
// transfer. Must not be dropped until all transfers have completed
// or have been stopped.
let mut linked_descriptor = DmacDescriptor::default();
// If read < write, the incoming words will be written to this memory location;
// it will be discarded after. If read > write, all writes after the
// buffer has been exhausted will write the nop word to "stimulate" the slave
// into sending data. Must not be dropped until all transfers have
// completed or have been stopped.
let mut source_sink_word = self.config.nop_word.as_();
let mut sercom_ptr = self.sercom_ptr();
let (read_link, write_link) = match read.len().cmp(&write.len()) {
Ordering::Equal => {
let mut write = SharedSliceBuffer::from_slice(write);
return self.transfer_blocking(&mut read, &mut write);
}
// `read` is shorter; link transfer to sink incoming words after the buffer has been
// filled.
Ordering::Less => {
let mut sink =
SinkSourceBuffer::new(&mut source_sink_word, write.len() - read.len());
unsafe {
channel::write_descriptor(
&mut linked_descriptor,
&mut sercom_ptr,
&mut sink,
// Add a null descriptor pointer to end the transfer.
core::ptr::null_mut(),
);
}
(Some(&mut linked_descriptor), None)
}
// `write` is shorter; link transfer to send NOP word after the buffer has been
// exhausted.
Ordering::Greater => {
let mut source =
SinkSourceBuffer::new(&mut source_sink_word, read.len() - write.len());
unsafe {
channel::write_descriptor(
&mut linked_descriptor,
&mut source,
&mut sercom_ptr,
// Add a null descriptor pointer to end the transfer.
core::ptr::null_mut(),
);
}
(None, Some(&mut linked_descriptor))
}
};
let rx = self._rx_channel.as_mut();
let tx = self._tx_channel.as_mut();
let mut write = SharedSliceBuffer::from_slice(write);
// SAFETY: We make sure that any DMA transfer is complete or stopped before
// returning. The order of operations is important; the RX transfer
// must be ready to receive before the TX transfer is initiated.
unsafe {
read_dma_linked::<_, _, S>(rx, sercom_ptr.clone(), &mut read, read_link);
write_dma_linked::<_, _, S>(tx, sercom_ptr, &mut write, write_link);
}
while !(rx.xfer_complete() && tx.xfer_complete()) {
core::hint::spin_loop();
}
// Defensively disable channels
tx.stop();
rx.stop();
// Check for overflows or DMA errors
self.read_status().check_bus_error()?;
self._rx_channel
.as_mut()
.xfer_success()
.and(self._tx_channel.as_mut().xfer_success())?;
Ok(())
}
#[inline]
fn transfer_in_place(&mut self, words: &mut [C::Word]) -> Result<(), Self::Error> {
// Safety: Aliasing the buffer is only safe because the DMA read will always be
// lagging one word behind the write, so they don't overlap on the same memory.
// It's preferable to use two `SharedSliceBuffer`s here; using the `words` slice
// directly as a buffer could potentially cause UB issues if not careful when
// aliasing, as it could be easy to create two `&mut` references pointing to the
// same buffer. `read_buf` and `write_buf` may only be read/written to by the
// DMAC, otherwise an `UnsafeCell` would be necessary.
unsafe {
let mut read_buf = SharedSliceBuffer::from_slice_unchecked(words);
let mut write_buf = SharedSliceBuffer::from_slice(words);
self.transfer_blocking(&mut read_buf, &mut write_buf)
}
}
#[inline]
fn flush(&mut self) -> Result<(), Error> {
self.flush_tx();
Ok(())
}
}
/// [`embedded_io::Write`] implementation for [`Transmit`] [`Spi`]s in either
/// [`Slave`] or [`MasterMode`], using DMA transfers.
impl<P, M, Z, D, R, T, S> embedded_io::Write for Spi<Config<P, M, Z>, D, R, T>
where
P: ValidPads,
M: OpMode,
Z: Size<Word = u8> + 'static,
Config<P, M, Z>: ValidConfig<Sercom = S>,
D: Transmit,
S: Sercom,
T: AnyChannel<Status = Ready>,
{
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Spi::write_dma(self, buf)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.flush_tx();
Ok(())
}
}
/// [`embedded_io::Read`] implementation for [`Receive`] [`Spi`]s in
/// [`MasterMode`], using DMA transfers.
impl<P, M, Z, D, R, T, S> embedded_io::Read for Spi<Config<P, M, Z>, D, R, T>
where
P: ValidPads,
M: MasterMode,
Z: Size<Word = u8> + 'static,
Config<P, M, Z>: ValidConfig<Sercom = S>,
D: Receive,
S: Sercom,
R: AnyChannel<Status = Ready>,
T: AnyChannel<Status = Ready>,
{
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.read_dma_master(buf)?;
Ok(buf.len())
}
}
/// [`embedded_io::Read`] implementation for [`Receive`] [`Spi`]s in [`Slave`]
/// mode, using DMA transfers.
impl<P, Z, D, R, T, S> embedded_io::Read for Spi<Config<P, Slave, Z>, D, R, T>
where
P: ValidPads,
Z: Size<Word = u8> + 'static,
Config<P, Slave, Z>: ValidConfig<Sercom = S>,
D: Receive,
S: Sercom,
R: AnyChannel<Status = Ready>,
{
fn read(&mut self, mut buf: &mut [u8]) -> Result<usize, Self::Error> {
if buf.is_empty() {
return Ok(0);
}
// In Slave mode, RX words can come in even if we haven't sent anything. This
// means some words can arrive asynchronously while we weren't looking (similar
// to UART RX). We need to check if we haven't missed any.
self.flush_rx()?;
let sercom_ptr = self.sercom_ptr();
let rx = self._rx_channel.as_mut();
// SAFETY: We make sure that any DMA transfer is complete or stopped before
// returning.
unsafe {
read_dma::<_, _, S>(rx, sercom_ptr.clone(), &mut buf);
}
while !(rx.xfer_complete()) {
core::hint::spin_loop();
}
// Defensively disable channel
rx.stop();
// Check for overflows or DMA errors
self.read_status().check_bus_error()?;
self._rx_channel.as_mut().xfer_success()?;
Ok(buf.len())
}
}