//! Delays
use atsamd_hal_macros::hal_cfg;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m::peripheral::SYST;
use crate::clock::GenericClockController;
use crate::ehal::delay::DelayNs;
use crate::ehal_02;
use crate::time::Hertz;
#[hal_cfg("rtc-d5x")]
use crate::typelevel::Increment;
#[hal_cfg("rtc-d5x")]
use crate::clock::v2::{gclk::Gclk0Id, Source};
/// System timer (SysTick) as a delay provider
pub struct Delay {
sysclock: Hertz,
syst: SYST,
}
impl Delay {
/// Configures the system timer (SysTick) as a delay provider
pub fn new(mut syst: SYST, clocks: &mut GenericClockController) -> Self {
syst.set_clock_source(SystClkSource::Core);
Delay {
syst,
sysclock: clocks.gclk0().into(),
}
}
#[hal_cfg("rtc-d5x")]
/// Configures the system timer (SysTick) as a delay provide, compatible
/// with the V2 clocking API
pub fn new_with_source<S>(mut syst: SYST, gclk0: S) -> (Self, S::Inc)
where
S: Source<Id = Gclk0Id> + Increment,
{
syst.set_clock_source(SystClkSource::Core);
(
Delay {
syst,
sysclock: gclk0.freq(),
},
gclk0.inc(),
)
}
/// Releases the system timer (SysTick) resource
pub fn free(self) -> SYST {
self.syst
}
}
impl DelayNs for Delay {
// The default method is delay_ns. If we don't provide implementations for
// delay_us and delay_ms, the trait impl will use delay_ns to implement the
// other two methods. As the delay implementation is actually defined in terms
// of microseconds, we need to provide implementations for all three methods.
fn delay_ns(&mut self, ns: u32) {
self.delay_us(ns / 1000);
}
fn delay_us(&mut self, us: u32) {
// The SysTick Reload Value register supports values between 1 and 0x00FFFFFF.
const MAX_RVR: u32 = 0x00FF_FFFF;
let mut total_rvr = us * (self.sysclock.to_Hz() / 1_000_000);
while total_rvr != 0 {
let current_rvr = if total_rvr <= MAX_RVR {
total_rvr
} else {
MAX_RVR
};
self.syst.set_reload(current_rvr);
self.syst.clear_current();
self.syst.enable_counter();
// Update the tracking variable while we are waiting...
total_rvr -= current_rvr;
while !self.syst.has_wrapped() {}
self.syst.disable_counter();
}
}
fn delay_ms(&mut self, ms: u32) {
self.delay_us(ms * 1000);
}
}
impl ehal_02::blocking::delay::DelayMs<u32> for Delay {
fn delay_ms(&mut self, ms: u32) {
<Self as DelayNs>::delay_us(self, ms * 1_000);
}
}
impl ehal_02::blocking::delay::DelayMs<u16> for Delay {
fn delay_ms(&mut self, ms: u16) {
<Self as ehal_02::blocking::delay::DelayMs<u32>>::delay_ms(self, ms as u32);
}
}
impl ehal_02::blocking::delay::DelayMs<u8> for Delay {
fn delay_ms(&mut self, ms: u8) {
<Self as ehal_02::blocking::delay::DelayMs<u32>>::delay_ms(self, ms as u32);
}
}
impl ehal_02::blocking::delay::DelayUs<u32> for Delay {
fn delay_us(&mut self, us: u32) {
<Self as DelayNs>::delay_us(self, us);
}
}
impl ehal_02::blocking::delay::DelayUs<u16> for Delay {
fn delay_us(&mut self, us: u16) {
<Self as ehal_02::blocking::delay::DelayUs<u32>>::delay_us(self, us as u32);
}
}
impl ehal_02::blocking::delay::DelayUs<u8> for Delay {
fn delay_us(&mut self, us: u8) {
<Self as ehal_02::blocking::delay::DelayUs<u32>>::delay_us(self, us as u32);
}
}