atsamd_hal/sercom/i2c/
reg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
//! Register-level access to I2C configuration

use super::flags::{BusState, Error};
use super::InactiveTimeout;
use super::{Flags, Status};
use crate::pac;
use crate::sercom::Sercom;
use crate::time::Hertz;
use atsamd_hal_macros::hal_cfg;

const MASTER_ACT_READ: u8 = 2;
const MASTER_ACT_STOP: u8 = 3;
const MASTER_ACT_REPEATED_START: u8 = 1;

#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
type DataReg = u8;

#[hal_cfg("sercom0-d5x")]
type DataReg = u32;

pub(in super::super) struct Registers<S: Sercom> {
    pub sercom: S,
}

// SAFETY: It is safe to implement Sync for Registers, because it erases the
// interior mutability of the PAC SERCOM struct.
unsafe impl<S: Sercom> Sync for Registers<S> {}

impl<S: Sercom> Registers<S> {
    /// Create a new `Registers` instance
    #[inline]
    pub(super) fn new(sercom: S) -> Self {
        Self { sercom }
    }

    /// Helper function to access the underlying `I2cm` from the given `SERCOM`
    #[inline]
    pub(in super::super) fn i2c_master(&self) -> &pac::sercom0::I2cm {
        self.sercom.i2cm()
    }

    /// Get a pointer to the `DATA` register
    pub(super) fn data_ptr<T>(&self) -> *mut T {
        self.i2c_master().data().as_ptr() as *mut _
    }

    /// Free the `Registers` struct and return the underlying `Sercom` instance
    #[inline]
    pub(super) fn free(self) -> S {
        self.sercom
    }

    /// Reset the SERCOM peripheral
    #[inline]
    pub(super) fn swrst(&mut self) {
        self.i2c_master().ctrla().write(|w| w.swrst().set_bit());
        while self.i2c_master().syncbusy().read().swrst().bit_is_set() {}
    }

    /// Configure the SERCOM to use I2C master mode
    #[inline]
    pub(super) fn set_op_mode(&mut self, mode: pac::sercom0::i2cm::ctrla::Modeselect) {
        self.i2c_master()
            .ctrla()
            .modify(|_, w| w.mode().variant(mode));
    }

    /// Configure the baudrate for I2C master mode
    pub(super) fn set_baud(&mut self, clock_freq: impl Into<Hertz>, baud: impl Into<Hertz>) {
        // Since BAUDLOW is 0, the baud rate is used to generate both SCL high and SCL
        // low periods.
        let baud = (clock_freq.into().to_Hz() / (2 * baud.into().to_Hz()) - 1) as u8;

        unsafe {
            self.i2c_master().baud().modify(|_, w| w.baud().bits(baud));
        }
    }

    /// Get the contents of the `BAUD` register.
    #[inline]
    pub(super) fn get_baud(&self) -> u32 {
        self.i2c_master().baud().read().bits()
    }

    /// Set SCL Low Time-Out
    ///
    /// If SCL is held low for 25ms-35ms, the master will release its clock
    /// hold, if enabled, and complete the current transaction. A stop condition
    /// will automatically be transmitted. INTFLAG.SB or INTFLAG.MB will be set
    /// as normal, but the clock hold will be released. The STATUS.LOWTOUT and
    /// STATUS.BUSERR status bits will be set.
    #[inline]
    pub(super) fn set_low_timeout(&mut self, set: bool) {
        self.i2c_master()
            .ctrla()
            .modify(|_, w| w.lowtouten().bit(set));
    }

    /// Get SCL Low Time-Out
    ///
    /// If SCL is held low for 25ms-35ms, the master will release its clock
    /// hold, if enabled, and complete the current transaction. A stop condition
    /// will automatically be transmitted. INTFLAG.SB or INTFLAG.MB will be set
    /// as normal, but the clock hold will be released. The STATUS.LOWTOUT and
    /// STATUS.BUSERR status bits will be set.
    #[inline]
    pub(super) fn get_low_timeout(&mut self) -> bool {
        self.i2c_master().ctrla().read().lowtouten().bit()
    }

    /// Set the inactive timeout after which the bus state will be set to IDLE.
    /// Necessary for SMBus compatibility.
    #[inline]
    pub(super) fn set_inactive_timeout(&mut self, timeout: super::InactiveTimeout) {
        // `unused_unsafe` is allowed here because `inactout().bits()` is unsafe on
        // thumbv6m targets, but not thumbv7em.
        #[allow(unused_unsafe)]
        self.i2c_master()
            .ctrla()
            .modify(|_, w| unsafe { w.inactout().bits(timeout as u8) })
    }

    /// Get the inactive timeout setting.
    #[inline]
    pub(super) fn get_inactive_timeout(&mut self) -> InactiveTimeout {
        let timeout = self.i2c_master().ctrla().read().inactout().bits();

        match timeout {
            0 => InactiveTimeout::Disabled,
            1 => InactiveTimeout::Us55,
            2 => InactiveTimeout::Us105,
            3 => InactiveTimeout::Us205,
            _ => unreachable!(),
        }
    }

    /// Run in standby mode
    ///
    /// When set, the I2C peripheral will run in standby mode. See the
    /// datasheet for more details.
    #[inline]
    pub(super) fn set_run_in_standby(&mut self, set: bool) {
        self.i2c_master()
            .ctrla()
            .modify(|_, w| w.runstdby().bit(set));
    }

    /// Get the current run in standby mode
    #[inline]
    pub(super) fn get_run_in_standby(&self) -> bool {
        self.i2c_master().ctrla().read().runstdby().bit()
    }

    /// Set Smart Mode
    #[inline]
    pub(super) fn set_smart_mode(&mut self, set: bool) {
        self.i2c_master().ctrlb().modify(|_, w| w.smen().bit(set));
    }

    /// Get the current Smart Mode setting
    #[inline]
    pub(super) fn get_smart_mode(&self) -> bool {
        self.i2c_master().ctrlb().read().smen().bit()
    }

    /// Clear specified interrupt flags
    #[inline]
    pub(super) fn clear_flags(&mut self, flags: Flags) {
        self.i2c_master()
            .intflag()
            .modify(|_, w| unsafe { w.bits(flags.bits()) });
    }

    /// Read interrupt flags
    #[inline]
    pub(super) fn read_flags(&self) -> Flags {
        Flags::from_bits_truncate(self.i2c_master().intflag().read().bits())
    }

    /// Enable specified interrupts
    #[inline]
    pub(super) fn enable_interrupts(&mut self, flags: Flags) {
        self.i2c_master()
            .intenset()
            .write(|w| unsafe { w.bits(flags.bits()) });
    }

    /// Disable specified interrupts
    #[inline]
    pub(super) fn disable_interrupts(&mut self, flags: Flags) {
        self.i2c_master()
            .intenclr()
            .write(|w| unsafe { w.bits(flags.bits()) });
    }

    /// Clear specified status flags
    #[inline]
    pub(super) fn clear_status(&mut self, status: Status) {
        self.i2c_master()
            .status()
            .modify(|_, w| unsafe { w.bits(status.into()) });
    }

    /// Read status flags
    #[inline]
    pub(super) fn read_status(&self) -> Status {
        self.i2c_master().status().read().bits().into()
    }

    pub(super) fn check_bus_status(&self) -> Result<(), Error> {
        let status = self.read_status();
        if status.busstate() == BusState::Busy
            || (status.arblost() && status.busstate() != BusState::Idle)
            || status.busstate() == BusState::Unknown
        {
            Err(Error::BusError)
        } else {
            Ok(())
        }
    }

    /// Start a write transaction. May be used by [`start_write_blocking`], or
    /// an async method.
    #[inline]
    pub(super) fn start_write(&mut self, addr: u8) -> Result<(), Error> {
        if self.get_smart_mode() {
            self.disable();
            self.set_smart_mode(false);
            self.enable();
        }

        self.check_bus_status()?;

        // RESET the `ADDR` register, then signal start and transmit encoded
        // address for a write transaction.
        unsafe {
            self.i2c_master()
                .addr()
                .write(|w| w.addr().bits(encode_write_address(addr)));
        }

        Ok(())
    }

    /// Start a blocking write transaction
    #[inline]
    pub(super) fn start_write_blocking(&mut self, addr: u8) -> Result<(), Error> {
        self.start_write(addr)?;

        // wait for transmission to complete
        while !self.i2c_master().intflag().read().mb().bit_is_set() {}
        self.read_status().check_bus_error()
    }

    /// Start a write transaction. May be used by [`start_write_blocking`], or
    /// an async method.
    pub(super) fn start_read(&mut self, addr: u8) -> Result<(), Error> {
        if self.get_smart_mode() {
            self.disable();
            self.set_smart_mode(false);
            self.enable();
        }

        self.check_bus_status()?;

        self.i2c_master()
            .intflag()
            .modify(|_, w| w.error().clear_bit());

        // RESET the `ADDR` register, then signal start (or repeated start if
        // appropriate) and transmit encoded address for a read transaction.
        unsafe {
            self.i2c_master()
                .addr()
                .write(|w| w.addr().bits(encode_read_address(addr)));
        }

        Ok(())
    }

    /// Start a blocking read transaction
    #[inline]
    pub(super) fn start_read_blocking(&mut self, addr: u8) -> Result<(), Error> {
        self.start_read(addr)?;

        // wait for transmission to complete
        loop {
            let intflag = self.i2c_master().intflag().read();
            // If arbitration was lost, it will be signalled via the mb bit
            if intflag.mb().bit_is_set() {
                return Err(Error::ArbitrationLost);
            }
            if intflag.sb().bit_is_set() || intflag.error().bit_is_set() {
                break;
            }
        }

        self.read_status().check_bus_error()
    }

    /// Start DMA write:
    /// * Write `ADDR.LENEN` to 1
    /// * Write the transaction length in `ADDR.LEN`.
    /// * Write `ADDR.ADDR` to the encoded write address
    ///
    /// After ADDR.LEN bytes have been transmitted, a NACK (for master reads)
    /// and STOP are automatically generated.
    #[cfg(feature = "dma")]
    #[inline]
    pub(in super::super) fn start_dma_write(&mut self, address: u8, xfer_len: u8) {
        if !self.get_smart_mode() {
            self.disable();
            self.set_smart_mode(true);
            self.enable();
        }

        self.i2c_master().addr().write(|w| unsafe {
            w.addr().bits(encode_write_address(address));
            w.len().bits(xfer_len);
            w.lenen().set_bit()
        });

        self.sync_sysop();
    }

    /// Start DMA read:
    /// * Write `ADDR.LENEN` to 1
    /// * Write the transaction length in `ADDR.LEN`.
    /// * Write `ADDR.ADDR` to the encoded write address
    ///
    /// After ADDR.LEN bytes have been received, a NACK (for master reads) and
    /// STOP are automatically generated.
    #[cfg(feature = "dma")]
    #[inline]
    pub(in super::super) fn start_dma_read(&mut self, address: u8, xfer_len: u8) {
        if !self.get_smart_mode() {
            self.disable();
            self.set_smart_mode(true);
            self.enable();
        }

        self.i2c_master().addr().write(|w| unsafe {
            w.addr().bits(encode_read_address(address));
            w.len().bits(xfer_len);
            w.lenen().set_bit()
        });

        self.sync_sysop();
    }

    /// Send a STOP condition. If the I2C is performing a read, will also send a
    /// NACK to the slave.
    #[inline]
    pub(super) fn cmd_stop(&mut self) {
        unsafe {
            self.i2c_master().ctrlb().modify(|_, w| {
                // set bit means send NACK
                w.ackact().set_bit();
                w.cmd().bits(MASTER_ACT_STOP)
            });
        }
        self.sync_sysop();
    }

    /// Send a REPEATED START condition. If the I2C is performing a read, will
    /// also send a NACK to the slave.
    #[inline]
    pub(super) fn cmd_repeated_start(&mut self) {
        unsafe {
            self.i2c_master().ctrlb().modify(|_, w| {
                // set bit means send NACK
                w.ackact().set_bit();
                w.cmd().bits(MASTER_ACT_REPEATED_START)
            });
        }
        self.sync_sysop();
    }

    #[inline]
    pub(super) fn cmd_read(&mut self) {
        unsafe {
            self.i2c_master().ctrlb().modify(|_, w| {
                // clear bit means send ack
                w.ackact().clear_bit();
                w.cmd().bits(MASTER_ACT_READ)
            });
        }
        self.sync_sysop();
    }

    #[inline]
    pub(super) fn write_one(&mut self, byte: u8) {
        unsafe {
            self.i2c_master().data().write(|w| w.bits(byte as DataReg));
        }
    }

    #[inline]
    pub(super) fn send_bytes(&mut self, bytes: &[u8]) -> Result<(), Error> {
        for b in bytes {
            self.write_one(*b);

            loop {
                let intflag = self.i2c_master().intflag().read();
                if intflag.mb().bit_is_set() || intflag.error().bit_is_set() {
                    break;
                }
            }
            self.read_status().check_bus_error()?;
        }
        Ok(())
    }

    #[inline]
    #[allow(clippy::unnecessary_cast)]
    pub(super) fn read_one(&mut self) -> u8 {
        // SAMx5x: u32 -> u8 conversion is fine as long as we don't set CTRLC.DATA32B to
        // 1.
        self.i2c_master().data().read().bits() as u8
    }

    #[inline]
    pub(super) fn read_one_blocking(&mut self) -> u8 {
        while !self.i2c_master().intflag().read().sb().bit_is_set() {
            core::hint::spin_loop();
        }
        self.read_one()
    }

    #[inline]
    pub(super) fn fill_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
        // Some manual iterator gumph because we need to ack bytes after the first.
        let mut iter = buffer.iter_mut();
        *iter.next().expect("buffer len is at least 1") = self.read_one_blocking();

        loop {
            match iter.next() {
                None => break,
                Some(dest) => {
                    // Ack the last byte so that we can receive another one
                    self.cmd_read();
                    *dest = self.read_one_blocking();
                }
            }
        }

        // arrange to send nack on next command to
        // stop slave from transmitting more data
        self.i2c_master()
            .ctrlb()
            .modify(|_, w| w.ackact().set_bit());

        Ok(())
    }

    #[inline]
    pub(super) fn do_write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
        self.start_write_blocking(addr)?;
        self.send_bytes(bytes)
    }

    /// Continue a write operation that was issued before with
    /// [`do_write`](Self::do_write) or [`continue_write`](Self::continue_write)
    /// without a repeated start condition in between
    #[inline]
    pub(super) fn continue_write(&mut self, bytes: &[u8]) -> Result<(), Error> {
        self.send_bytes(bytes)
    }

    #[inline]
    pub(super) fn do_read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> {
        self.start_read_blocking(addr)?;
        self.fill_buffer(buffer)
    }

    /// Continue a read operation that was issued before with
    /// [`do_read`](Self::do_read) or [`continue_read`](Self::continue_read)
    /// without a repeated start condition in between
    #[inline]
    pub(super) fn continue_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
        self.fill_buffer(buffer)
    }

    #[inline]
    pub(super) fn do_write_read(
        &mut self,
        addr: u8,
        bytes: &[u8],
        buffer: &mut [u8],
    ) -> Result<(), Error> {
        self.start_write_blocking(addr)?;
        self.send_bytes(bytes)?;
        self.start_read_blocking(addr)?;
        self.fill_buffer(buffer)?;
        Ok(())
    }

    /// Set the bus to IDLE
    #[inline]
    pub(super) fn bus_idle(&mut self) {
        // Set the bus idle
        self.i2c_master()
            .status()
            .modify(|_, w| unsafe { w.busstate().bits(BusState::Idle as u8) });
        // Wait for it to take effect
        self.sync_sysop();
    }

    #[inline]
    fn sync_sysop(&mut self) {
        while self.i2c_master().syncbusy().read().sysop().bit_is_set() {}
    }

    /// Enable the I2C peripheral
    ///
    /// I2C transactions are not possible until the peripheral is enabled.
    #[inline]
    pub(super) fn enable(&mut self) {
        // Globally enable peripheral
        self.enable_peripheral(true);
        // Set the bus state to IDLE
        self.bus_idle();
    }

    #[inline]
    pub(super) fn disable(&mut self) {
        self.enable_peripheral(false);
    }

    /// Enable or disable the SERCOM peripheral, and wait for the ENABLE bit to
    /// synchronize.
    #[inline]
    pub(super) fn enable_peripheral(&mut self, enable: bool) {
        self.i2c_master()
            .ctrla()
            .modify(|_, w| w.enable().bit(enable));
        while self.i2c_master().syncbusy().read().enable().bit_is_set() {}
    }
}

fn encode_write_address(addr_7_bits: u8) -> u16 {
    (addr_7_bits as u16) << 1
}

fn encode_read_address(addr_7_bits: u8) -> u16 {
    ((addr_7_bits as u16) << 1) | 1
}