atsamd_hal/sercom/i2c/reg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
//! Register-level access to I2C configuration
use super::flags::{BusState, Error};
use super::InactiveTimeout;
use super::{Flags, Status};
use crate::pac;
use crate::sercom::Sercom;
use crate::time::Hertz;
use atsamd_hal_macros::hal_cfg;
const MASTER_ACT_READ: u8 = 2;
const MASTER_ACT_STOP: u8 = 3;
const MASTER_ACT_REPEATED_START: u8 = 1;
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
type DataReg = u8;
#[hal_cfg("sercom0-d5x")]
type DataReg = u32;
pub(in super::super) struct Registers<S: Sercom> {
pub sercom: S,
}
// SAFETY: It is safe to implement Sync for Registers, because it erases the
// interior mutability of the PAC SERCOM struct.
unsafe impl<S: Sercom> Sync for Registers<S> {}
impl<S: Sercom> Registers<S> {
/// Create a new `Registers` instance
#[inline]
pub(super) fn new(sercom: S) -> Self {
Self { sercom }
}
/// Helper function to access the underlying `I2cm` from the given `SERCOM`
#[inline]
pub(in super::super) fn i2c_master(&self) -> &pac::sercom0::I2cm {
self.sercom.i2cm()
}
/// Get a pointer to the `DATA` register
pub(super) fn data_ptr<T>(&self) -> *mut T {
self.i2c_master().data().as_ptr() as *mut _
}
/// Free the `Registers` struct and return the underlying `Sercom` instance
#[inline]
pub(super) fn free(self) -> S {
self.sercom
}
/// Reset the SERCOM peripheral
#[inline]
pub(super) fn swrst(&mut self) {
self.i2c_master().ctrla().write(|w| w.swrst().set_bit());
while self.i2c_master().syncbusy().read().swrst().bit_is_set() {}
}
/// Configure the SERCOM to use I2C master mode
#[inline]
pub(super) fn set_op_mode(&mut self, mode: pac::sercom0::i2cm::ctrla::Modeselect) {
self.i2c_master()
.ctrla()
.modify(|_, w| w.mode().variant(mode));
}
/// Configure the baudrate for I2C master mode
pub(super) fn set_baud(&mut self, clock_freq: impl Into<Hertz>, baud: impl Into<Hertz>) {
// Since BAUDLOW is 0, the baud rate is used to generate both SCL high and SCL
// low periods.
let baud = (clock_freq.into().to_Hz() / (2 * baud.into().to_Hz()) - 1) as u8;
unsafe {
self.i2c_master().baud().modify(|_, w| w.baud().bits(baud));
}
}
/// Get the contents of the `BAUD` register.
#[inline]
pub(super) fn get_baud(&self) -> u32 {
self.i2c_master().baud().read().bits()
}
/// Set SCL Low Time-Out
///
/// If SCL is held low for 25ms-35ms, the master will release its clock
/// hold, if enabled, and complete the current transaction. A stop condition
/// will automatically be transmitted. INTFLAG.SB or INTFLAG.MB will be set
/// as normal, but the clock hold will be released. The STATUS.LOWTOUT and
/// STATUS.BUSERR status bits will be set.
#[inline]
pub(super) fn set_low_timeout(&mut self, set: bool) {
self.i2c_master()
.ctrla()
.modify(|_, w| w.lowtouten().bit(set));
}
/// Get SCL Low Time-Out
///
/// If SCL is held low for 25ms-35ms, the master will release its clock
/// hold, if enabled, and complete the current transaction. A stop condition
/// will automatically be transmitted. INTFLAG.SB or INTFLAG.MB will be set
/// as normal, but the clock hold will be released. The STATUS.LOWTOUT and
/// STATUS.BUSERR status bits will be set.
#[inline]
pub(super) fn get_low_timeout(&mut self) -> bool {
self.i2c_master().ctrla().read().lowtouten().bit()
}
/// Set the inactive timeout after which the bus state will be set to IDLE.
/// Necessary for SMBus compatibility.
#[inline]
pub(super) fn set_inactive_timeout(&mut self, timeout: super::InactiveTimeout) {
// `unused_unsafe` is allowed here because `inactout().bits()` is unsafe on
// thumbv6m targets, but not thumbv7em.
#[allow(unused_unsafe)]
self.i2c_master()
.ctrla()
.modify(|_, w| unsafe { w.inactout().bits(timeout as u8) })
}
/// Get the inactive timeout setting.
#[inline]
pub(super) fn get_inactive_timeout(&mut self) -> InactiveTimeout {
let timeout = self.i2c_master().ctrla().read().inactout().bits();
match timeout {
0 => InactiveTimeout::Disabled,
1 => InactiveTimeout::Us55,
2 => InactiveTimeout::Us105,
3 => InactiveTimeout::Us205,
_ => unreachable!(),
}
}
/// Run in standby mode
///
/// When set, the I2C peripheral will run in standby mode. See the
/// datasheet for more details.
#[inline]
pub(super) fn set_run_in_standby(&mut self, set: bool) {
self.i2c_master()
.ctrla()
.modify(|_, w| w.runstdby().bit(set));
}
/// Get the current run in standby mode
#[inline]
pub(super) fn get_run_in_standby(&self) -> bool {
self.i2c_master().ctrla().read().runstdby().bit()
}
/// Set Smart Mode
#[inline]
pub(super) fn set_smart_mode(&mut self, set: bool) {
self.i2c_master().ctrlb().modify(|_, w| w.smen().bit(set));
}
/// Get the current Smart Mode setting
#[inline]
pub(super) fn get_smart_mode(&self) -> bool {
self.i2c_master().ctrlb().read().smen().bit()
}
/// Clear specified interrupt flags
#[inline]
pub(super) fn clear_flags(&mut self, flags: Flags) {
self.i2c_master()
.intflag()
.modify(|_, w| unsafe { w.bits(flags.bits()) });
}
/// Read interrupt flags
#[inline]
pub(super) fn read_flags(&self) -> Flags {
Flags::from_bits_truncate(self.i2c_master().intflag().read().bits())
}
/// Enable specified interrupts
#[inline]
pub(super) fn enable_interrupts(&mut self, flags: Flags) {
self.i2c_master()
.intenset()
.write(|w| unsafe { w.bits(flags.bits()) });
}
/// Disable specified interrupts
#[inline]
pub(super) fn disable_interrupts(&mut self, flags: Flags) {
self.i2c_master()
.intenclr()
.write(|w| unsafe { w.bits(flags.bits()) });
}
/// Clear specified status flags
#[inline]
pub(super) fn clear_status(&mut self, status: Status) {
self.i2c_master()
.status()
.modify(|_, w| unsafe { w.bits(status.into()) });
}
/// Read status flags
#[inline]
pub(super) fn read_status(&self) -> Status {
self.i2c_master().status().read().bits().into()
}
pub(super) fn check_bus_status(&self) -> Result<(), Error> {
let status = self.read_status();
if status.busstate() == BusState::Busy
|| (status.arblost() && status.busstate() != BusState::Idle)
|| status.busstate() == BusState::Unknown
{
Err(Error::BusError)
} else {
Ok(())
}
}
/// Start a write transaction. May be used by [`start_write_blocking`], or
/// an async method.
#[inline]
pub(super) fn start_write(&mut self, addr: u8) -> Result<(), Error> {
if self.get_smart_mode() {
self.disable();
self.set_smart_mode(false);
self.enable();
}
self.check_bus_status()?;
// RESET the `ADDR` register, then signal start and transmit encoded
// address for a write transaction.
unsafe {
self.i2c_master()
.addr()
.write(|w| w.addr().bits(encode_write_address(addr)));
}
Ok(())
}
/// Start a blocking write transaction
#[inline]
pub(super) fn start_write_blocking(&mut self, addr: u8) -> Result<(), Error> {
self.start_write(addr)?;
// wait for transmission to complete
while !self.i2c_master().intflag().read().mb().bit_is_set() {}
self.read_status().check_bus_error()
}
/// Start a write transaction. May be used by [`start_write_blocking`], or
/// an async method.
pub(super) fn start_read(&mut self, addr: u8) -> Result<(), Error> {
if self.get_smart_mode() {
self.disable();
self.set_smart_mode(false);
self.enable();
}
self.check_bus_status()?;
self.i2c_master()
.intflag()
.modify(|_, w| w.error().clear_bit());
// RESET the `ADDR` register, then signal start (or repeated start if
// appropriate) and transmit encoded address for a read transaction.
unsafe {
self.i2c_master()
.addr()
.write(|w| w.addr().bits(encode_read_address(addr)));
}
Ok(())
}
/// Start a blocking read transaction
#[inline]
pub(super) fn start_read_blocking(&mut self, addr: u8) -> Result<(), Error> {
self.start_read(addr)?;
// wait for transmission to complete
loop {
let intflag = self.i2c_master().intflag().read();
// If arbitration was lost, it will be signalled via the mb bit
if intflag.mb().bit_is_set() {
return Err(Error::ArbitrationLost);
}
if intflag.sb().bit_is_set() || intflag.error().bit_is_set() {
break;
}
}
self.read_status().check_bus_error()
}
/// Start DMA write:
/// * Write `ADDR.LENEN` to 1
/// * Write the transaction length in `ADDR.LEN`.
/// * Write `ADDR.ADDR` to the encoded write address
///
/// After ADDR.LEN bytes have been transmitted, a NACK (for master reads)
/// and STOP are automatically generated.
#[cfg(feature = "dma")]
#[inline]
pub(in super::super) fn start_dma_write(&mut self, address: u8, xfer_len: u8) {
if !self.get_smart_mode() {
self.disable();
self.set_smart_mode(true);
self.enable();
}
self.i2c_master().addr().write(|w| unsafe {
w.addr().bits(encode_write_address(address));
w.len().bits(xfer_len);
w.lenen().set_bit()
});
self.sync_sysop();
}
/// Start DMA read:
/// * Write `ADDR.LENEN` to 1
/// * Write the transaction length in `ADDR.LEN`.
/// * Write `ADDR.ADDR` to the encoded write address
///
/// After ADDR.LEN bytes have been received, a NACK (for master reads) and
/// STOP are automatically generated.
#[cfg(feature = "dma")]
#[inline]
pub(in super::super) fn start_dma_read(&mut self, address: u8, xfer_len: u8) {
if !self.get_smart_mode() {
self.disable();
self.set_smart_mode(true);
self.enable();
}
self.i2c_master().addr().write(|w| unsafe {
w.addr().bits(encode_read_address(address));
w.len().bits(xfer_len);
w.lenen().set_bit()
});
self.sync_sysop();
}
/// Send a STOP condition. If the I2C is performing a read, will also send a
/// NACK to the slave.
#[inline]
pub(super) fn cmd_stop(&mut self) {
unsafe {
self.i2c_master().ctrlb().modify(|_, w| {
// set bit means send NACK
w.ackact().set_bit();
w.cmd().bits(MASTER_ACT_STOP)
});
}
self.sync_sysop();
}
/// Send a REPEATED START condition. If the I2C is performing a read, will
/// also send a NACK to the slave.
#[inline]
pub(super) fn cmd_repeated_start(&mut self) {
unsafe {
self.i2c_master().ctrlb().modify(|_, w| {
// set bit means send NACK
w.ackact().set_bit();
w.cmd().bits(MASTER_ACT_REPEATED_START)
});
}
self.sync_sysop();
}
#[inline]
pub(super) fn cmd_read(&mut self) {
unsafe {
self.i2c_master().ctrlb().modify(|_, w| {
// clear bit means send ack
w.ackact().clear_bit();
w.cmd().bits(MASTER_ACT_READ)
});
}
self.sync_sysop();
}
#[inline]
pub(super) fn write_one(&mut self, byte: u8) {
unsafe {
self.i2c_master().data().write(|w| w.bits(byte as DataReg));
}
}
#[inline]
pub(super) fn send_bytes(&mut self, bytes: &[u8]) -> Result<(), Error> {
for b in bytes {
self.write_one(*b);
loop {
let intflag = self.i2c_master().intflag().read();
if intflag.mb().bit_is_set() || intflag.error().bit_is_set() {
break;
}
}
self.read_status().check_bus_error()?;
}
Ok(())
}
#[inline]
#[allow(clippy::unnecessary_cast)]
pub(super) fn read_one(&mut self) -> u8 {
// SAMx5x: u32 -> u8 conversion is fine as long as we don't set CTRLC.DATA32B to
// 1.
self.i2c_master().data().read().bits() as u8
}
#[inline]
pub(super) fn read_one_blocking(&mut self) -> u8 {
while !self.i2c_master().intflag().read().sb().bit_is_set() {
core::hint::spin_loop();
}
self.read_one()
}
#[inline]
pub(super) fn fill_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// Some manual iterator gumph because we need to ack bytes after the first.
let mut iter = buffer.iter_mut();
*iter.next().expect("buffer len is at least 1") = self.read_one_blocking();
loop {
match iter.next() {
None => break,
Some(dest) => {
// Ack the last byte so that we can receive another one
self.cmd_read();
*dest = self.read_one_blocking();
}
}
}
// arrange to send nack on next command to
// stop slave from transmitting more data
self.i2c_master()
.ctrlb()
.modify(|_, w| w.ackact().set_bit());
Ok(())
}
#[inline]
pub(super) fn do_write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
self.start_write_blocking(addr)?;
self.send_bytes(bytes)
}
/// Continue a write operation that was issued before with
/// [`do_write`](Self::do_write) or [`continue_write`](Self::continue_write)
/// without a repeated start condition in between
#[inline]
pub(super) fn continue_write(&mut self, bytes: &[u8]) -> Result<(), Error> {
self.send_bytes(bytes)
}
#[inline]
pub(super) fn do_read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.start_read_blocking(addr)?;
self.fill_buffer(buffer)
}
/// Continue a read operation that was issued before with
/// [`do_read`](Self::do_read) or [`continue_read`](Self::continue_read)
/// without a repeated start condition in between
#[inline]
pub(super) fn continue_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.fill_buffer(buffer)
}
#[inline]
pub(super) fn do_write_read(
&mut self,
addr: u8,
bytes: &[u8],
buffer: &mut [u8],
) -> Result<(), Error> {
self.start_write_blocking(addr)?;
self.send_bytes(bytes)?;
self.start_read_blocking(addr)?;
self.fill_buffer(buffer)?;
Ok(())
}
/// Set the bus to IDLE
#[inline]
pub(super) fn bus_idle(&mut self) {
// Set the bus idle
self.i2c_master()
.status()
.modify(|_, w| unsafe { w.busstate().bits(BusState::Idle as u8) });
// Wait for it to take effect
self.sync_sysop();
}
#[inline]
fn sync_sysop(&mut self) {
while self.i2c_master().syncbusy().read().sysop().bit_is_set() {}
}
/// Enable the I2C peripheral
///
/// I2C transactions are not possible until the peripheral is enabled.
#[inline]
pub(super) fn enable(&mut self) {
// Globally enable peripheral
self.enable_peripheral(true);
// Set the bus state to IDLE
self.bus_idle();
}
#[inline]
pub(super) fn disable(&mut self) {
self.enable_peripheral(false);
}
/// Enable or disable the SERCOM peripheral, and wait for the ENABLE bit to
/// synchronize.
#[inline]
pub(super) fn enable_peripheral(&mut self, enable: bool) {
self.i2c_master()
.ctrla()
.modify(|_, w| w.enable().bit(enable));
while self.i2c_master().syncbusy().read().enable().bit_is_set() {}
}
}
fn encode_write_address(addr_7_bits: u8) -> u16 {
(addr_7_bits as u16) << 1
}
fn encode_read_address(addr_7_bits: u8) -> u16 {
((addr_7_bits as u16) << 1) | 1
}