atsamd_hal/dmac/channel/reg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
//! # Channel registers
//!
//! This module adds a [`RegisterBlock`] struct, which acts as a proxy for the
//! registers a single DMAC [`Channel`](super::Channel) can read/write. Its
//! purpose is to remediate the inadequacies of the PAC. In particular, for
//! SAMD11/SAMD21, the CHID register must be written with the correct channel ID
//! before accessing the channel specific registers. There is a provided
//! `with_chid` method that takes a closure with the register read/write proxies
//! to ensure any read/write to these registers are done in an interrupt-safe
//! way. For SAMD51+, `with_chid` returns the register block which contains the
//! registers owned by a specific channel.
use atsamd_hal_macros::{hal_cfg, hal_macro_helper};
use super::super::dma_controller::ChId;
use core::marker::PhantomData;
use paste::paste;
use crate::pac::{
self,
dmac::{
busych::BusychSpec, intstatus::IntstatusSpec, pendch::PendchSpec,
swtrigctrl::SwtrigctrlSpec,
},
dmac::{Busych, Intstatus, Pendch, Swtrigctrl},
Dmac, Peripherals,
};
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
use pac::dmac as channel_regs;
#[hal_cfg("dmac-d5x")]
use pac::dmac::channel as channel_regs;
use channel_regs::{
chctrla::ChctrlaSpec, chctrlb::ChctrlbSpec, chintenclr::ChintenclrSpec,
chintenset::ChintensetSpec, chintflag::ChintflagSpec, chstatus::ChstatusSpec,
};
use channel_regs::{Chctrla, Chctrlb, Chintenclr, Chintenset, Chintflag, Chstatus};
#[hal_cfg("dmac-d5x")]
use pac::dmac::channel::{chprilvl::ChprilvlSpec, Chprilvl};
//==============================================================================
// RegisterBlock
//==============================================================================
/// Read/write proxy for DMAC registers accessible to individual channels.
pub(super) trait Register<Id: ChId> {
/// Get a shared reference to the underlying PAC object
fn dmac(&self) -> &Dmac;
/// Set channel ID and run the closure. A closure is needed to ensure
/// the registers are accessed in an interrupt-safe way, as the SAMD21
/// DMAC is a little funky - It requires setting the channel number in
/// the CHID register, then access the channel control registers.
/// If an interrupt were to change the CHID register and not reset it
/// to the expected value, we would be faced with undefined behaviour.
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
#[inline]
fn with_chid<F: FnOnce(&Dmac) -> R, R>(&mut self, fun: F) -> R {
// SAFETY: This method is ONLY safe if the individual channels are GUARANTEED
// not to mess with either:
// - The global DMAC configuration
// - The configuration of other channels.
//
// In practice, this means that the channel-specific registers should only be
// accessed through the `with_chid` method.
let dmac = self.dmac();
let mut old_id = 0;
dmac.chid().modify(|r, w| {
// Get the CHID contents before changing channel
old_id = r.id().bits();
// Change channels
unsafe { w.id().bits(Id::U8) }
});
// Run the provided closure on the channel we own
let ret = fun(dmac);
// Restore the old CHID value. This way, if we're running `with_chid` from an
// ISR, the CHID value will still be what the preempted context expects
// when the method returns.
unsafe { dmac.chid().write(|w| w.id().bits(old_id)) };
ret
}
/// Set channel ID and run the closure. A closure is needed to ensure
/// the registers are accessed in an interrupt-safe way, as the SAMD21
/// DMAC is a little funky. For the SAMD51/SAMEx, we simply take a reference
/// to the correct channel number and run the closure on that.
#[hal_cfg("dmac-d5x")]
#[inline]
fn with_chid<F: FnOnce(&pac::dmac::Channel) -> R, R>(&mut self, fun: F) -> R {
// SAFETY: This method is ONLY safe if the individual channels are GUARANTEED
// not to mess with either:
// - The global DMAC configuration
// - The configuration of other channels.
//
// In practice, this means that the channel-specific registers should only be
// accessed through the `with_chid` method.
let ch = &self.dmac().channel(Id::USIZE);
fun(ch)
}
}
macro_rules! reg_proxy {
(@new $reg:ident) => {
paste! {
/// Register proxy tied to a specific channel
pub(super) struct [< $reg:camel Proxy >]<Id: ChId, REG> {
#[allow(unused)]
dmac: Dmac,
_id: PhantomData<Id>,
_reg: PhantomData<REG>,
}
impl<Id: ChId> [< $reg:camel Proxy >]<Id, [< $reg:camel >]> {
/// Create a new register proxy
#[inline]
pub fn new() -> Self {
Self {
// SAFETY: This is safe as long as the register
// only reads/writes registers through
// the `with_chid` method.
dmac: unsafe { Peripherals::steal().dmac },
_id: PhantomData,
_reg: PhantomData,
}
}
}
}
};
// Internal rule for a Read-enabled register
(@read_reg $reg:ident) => {
paste! {
impl<Id: ChId> Register<Id> for [< $reg:camel Proxy >]<Id, [< $reg:camel >]> {
fn dmac(&self) -> &Dmac {
&self.dmac
}
}
impl<Id> [< $reg:camel Proxy >]<Id, [< $reg:camel >]> where Id: ChId, [< $reg:camel Spec>]: pac::generic::Readable {
#[inline]
#[allow(dead_code)]
pub fn read(&mut self) -> channel_regs::[< $reg:lower >]::R {
self.with_chid(|d| d.[< $reg:lower >]().read())
}
}
}
};
// Read-only register
($reg:ident, register, r) => {
paste! {
reg_proxy!(@new $reg);
reg_proxy!(@read_reg $reg);
}
};
// Read-write register
($reg:ident, register, rw) => {
paste! {
reg_proxy!(@new $reg);
reg_proxy!(@read_reg $reg);
impl<Id> [< $reg:camel Proxy >]<Id, [< $reg:camel >]> where Id: ChId, [< $reg:camel Spec >]: pac::generic::Writable {
#[inline]
#[allow(dead_code)]
pub fn write<F>(&mut self, func: F)
where
for<'w> F: FnOnce(&'w mut channel_regs::[< $reg:lower >]::W) -> &'w mut channel_regs::[< $reg:lower >]::W,
{
self.with_chid(|d| d.[< $reg:lower >]().write(|w| func(w)));
}
}
impl<Id>[< $reg:camel Proxy >]<Id, [< $reg:camel >]> where
Id: ChId,
[< $reg:camel Spec >]: pac::generic::Writable + pac::generic::Readable
{
#[inline]
#[allow(dead_code)]
pub fn modify<F>(&mut self, func: F)
where
for<'w> F: FnOnce(
&channel_regs::[< $reg:lower >]::R,
&'w mut channel_regs::[< $reg:lower >]::W
) -> &'w mut channel_regs::[< $reg:lower >]::W,
{
self.with_chid(|d| d.[< $reg:lower >]().modify(|r, w| func(r, w)));
}
}
}
};
// Internal rule for read-enabled bit
(@read_bit $reg:ident) => {
paste! {
impl<Id: ChId> Register<Id> for [< $reg:camel Proxy >]<Id, [< $reg:camel >]> {
fn dmac(&self) -> &Dmac {
&self.dmac
}
}
impl<Id> [< $reg:camel Proxy >]<Id, [< $reg:camel >]> where Id: ChId, [< $reg:camel Spec >]: pac::generic::Readable {
#[inline]
#[allow(dead_code)]
pub fn read_bit(&self) -> bool {
self.dmac.[< $reg:lower >]().read().bits() & (1 << Id::U8) != 0
}
}
}
};
// Read-only bit
($reg:ident, bit, r) => {
paste! {
reg_proxy!(@new $reg);
reg_proxy!(@read_bit $reg);
}
};
// Read-write bit
($reg:ident, bit, rw) => {
paste! {
reg_proxy!(@new $reg);
reg_proxy!(@read_bit $reg);
impl<Id> [< $reg:camel Proxy >]<Id, [< $reg:camel >]> where
Id: ChId,
[< $reg:camel Spec >]: pac::generic::Readable + pac::generic::Writable
{
#[inline]
#[allow(dead_code)]
pub fn set_bit(&mut self) {
// SAFETY: This is safe because we are only writing
// to the bit controlled by the channel.
unsafe {
self.dmac.[< $reg:lower >]().modify(|r, w| w.bits(r.bits() | (1 << Id::U8)));
}
}
#[inline]
#[allow(dead_code)]
pub fn clear_bit(&mut self) {
// SAFETY: This is safe because we are only writing
// to the bit controlled by the channel.
unsafe {
self.dmac.[< $reg:lower >]().modify(|r, w| w.bits(r.bits() & !(1 << Id::U8)));
}
}
}
}
};
}
reg_proxy!(chctrla, register, rw);
reg_proxy!(chctrlb, register, rw);
reg_proxy!(chintenclr, register, rw);
reg_proxy!(chintenset, register, rw);
reg_proxy!(chintflag, register, rw);
reg_proxy!(chstatus, register, r);
#[hal_cfg("dmac-d5x")]
reg_proxy!(chprilvl, register, rw);
reg_proxy!(intstatus, bit, r);
reg_proxy!(busych, bit, r);
reg_proxy!(pendch, bit, r);
reg_proxy!(swtrigctrl, bit, rw);
/// Acts as a proxy to the PAC DMAC object. Only registers and bits
/// within registers that should be readable/writable by specific
/// [`Channel`]s are exposed.
///
/// This struct implements [`Drop`]. Dropping this struct will stop
/// any ongoing transfers for the channel which it represents.
#[allow(dead_code)]
#[hal_macro_helper]
pub(super) struct RegisterBlock<Id: ChId> {
pub chctrla: ChctrlaProxy<Id, Chctrla>,
pub chctrlb: ChctrlbProxy<Id, Chctrlb>,
pub chintenclr: ChintenclrProxy<Id, Chintenclr>,
pub chintenset: ChintensetProxy<Id, Chintenset>,
pub chintflag: ChintflagProxy<Id, Chintflag>,
pub chstatus: ChstatusProxy<Id, Chstatus>,
pub intstatus: IntstatusProxy<Id, Intstatus>,
pub busych: BusychProxy<Id, Busych>,
pub pendch: PendchProxy<Id, Pendch>,
pub swtrigctrl: SwtrigctrlProxy<Id, Swtrigctrl>,
#[hal_cfg("dmac-d5x")]
pub chprilvl: ChprilvlProxy<Id, Chprilvl>,
}
impl<Id: ChId> RegisterBlock<Id> {
#[hal_macro_helper]
pub(super) fn new(_id: PhantomData<Id>) -> Self {
Self {
chctrla: ChctrlaProxy::new(),
chctrlb: ChctrlbProxy::new(),
chintenclr: ChintenclrProxy::new(),
chintenset: ChintensetProxy::new(),
chintflag: ChintflagProxy::new(),
chstatus: ChstatusProxy::new(),
intstatus: IntstatusProxy::new(),
busych: BusychProxy::new(),
pendch: PendchProxy::new(),
swtrigctrl: SwtrigctrlProxy::new(),
#[hal_cfg("dmac-d5x")]
chprilvl: ChprilvlProxy::new(),
}
}
}
impl<Id: ChId> Drop for RegisterBlock<Id> {
fn drop(&mut self) {
// Stop any potentially ongoing transfers
self.chctrla.modify(|_, w| w.enable().clear_bit());
while self.chctrla.read().enable().bit_is_set() {
core::hint::spin_loop();
}
// Prevent the compiler from re-ordering read/write
// operations beyond this fence.
// (see https://docs.rust-embedded.org/embedonomicon/dma.html#compiler-misoptimizations)
core::sync::atomic::fence(core::sync::atomic::Ordering::Acquire); // ▼
}
}