atsamd_hal/sercom/
spi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
//! Use a SERCOM peripheral for SPI transactions
//!
//! Using an SPI peripheral occurs in three steps. First, you must supply
//! [`gpio`] [`Pin`]s to create a set of [`Pads`]. Next, you combine the
//! `Pads` with other pieces to form a [`Config`] struct. Finally, after
//! configuring the peripheral, you [`enable`] it to yield a functional
//! [`Spi`] struct. Transactions are performed using traits from the
//! [`embedded_hal`] crate, specifically those from the
//! [`spi`](embedded_hal::spi), [`serial`](embedded_hal::serial), and
//! [`blocking`](embedded_hal::blocking) modules.
//!
//! # Crating a set of [`Pads`]
//!
//! An SPI peripheral can use up to four [`Pin`]s as [`Sercom`] pads. However,
//! only certain `Pin` combinations are acceptable. All `Pin`s must be mapped to
//! the same `Sercom`, and for SAMx5x chips, they must also belong to the same
//! `IoSet`.
//! This HAL makes it impossible to use invalid `Pin` combinations, and the
//! [`Pads`] struct is responsible for enforcing these constraints.
//!
//! A `Pads` type takes five or six type parameters, depending on the chip. The
//! first type always specifies the `Sercom`. On SAMx5x chips, the second type
//! specifies the `IoSet`. The remaining four type parameters, `DI`, `DO`, `CK`
//! and `SS`, represent the Data In, Data Out, Sclk and SS pads respectively.
//! Each of these type parameters is an [`OptionalPad`] and defaults to
//! [`NoneT`]. A `Pad` is just a `Pin` configured in the correct [`PinMode`]
//! that implements [`IsPad`]. The [`bsp_pins!`](crate::bsp_pins) macro can be
//! used to define convenient type aliases for `Pad` types.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09, AlternateC};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! type Miso = Pin<PA08, AlternateC>;
//! type Sclk = Pin<PA09, AlternateC>;
//!
//! // SAMD11/SAMD21 version
//! type Pads = spi::Pads<Sercom0, Miso, NoneT, Sclk>;
//! // SAMx5x version
//! type Pads = spi::Pads<Sercom0, IoSet1, Miso, NoneT, Sclk>;
//! ```
//!
//! [`enable`]: Config::enable
//! [`gpio`]: crate::gpio
//! [`Pin`]: crate::gpio::pin::Pin
//! [`PinId`]: crate::gpio::pin::PinId
//! [`PinMode`]: crate::gpio::pin::PinMode
//!
//!
//! Alternatively, you can use the `PadsFromIds` alias to define a set of
//! `Pads` in terms of [`PinId`]s instead of [`Pin`]s. This is useful when you
//! don't have [`Pin`] aliases pre-defined.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! // SAMD21 version
//! type Pads = spi::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! // SAMx5x version
//! type Pads = spi::PadsFromIds<Sercom0, IoSet1, PA08, NoneT, PA09>;
//! ```
//!
//! Instances of `Pads` are created using the builder pattern. Start by creating
//! an empty set of `Pads` using [`Default`]. Then pass each respective `Pin`
//! using the corresponding methods. For SAMD21 and SAMx5x chips, the builder
//! methods automatically convert each pin to the correct [`PinMode`]. However,
//! due to inherent ambiguities, users must manually configure `PinMode`s for
//! SAMD11 chips.
//!
//! ```
//! use atsamd_hal::target_device::Peripherals;
//! use atsamd_hal::gpio::Pins;
//! use atsamd_hal::sercom::{Sercom0, spi};
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! let mut peripherals = Peripherals::take().unwrap();
//! let pins = Pins::new(peripherals.PORT);
//! // SAMD21 version
//! let pads = spi::Pads::<Sercom0>::default()
//!     .sclk(pins.pa09)
//!     .data_in(pins.pa08)
//!     .data_out(pins.pa11);
//! // SAMx5x version
//! let pads = spi::Pads::<Sercom0, IoSet1>::default()
//!     .sclk(pins.pa09)
//!     .data_in(pins.pa08)
//!     .data_out(pins.pa11);
//! ```
//!
//! To be accepted by the [`Config`] struct as a set of [`ValidPads`], the
//! `Pads` must do two things:
//! - Specify [`SomePad`] for `CK` and at least one of `DI` or `DO`
//! - Use a valid combination of [`PadNum`]s, so that the `Pads` implement
//!   [`DipoDopo`]
//!
//! # `Config`uring the peripheral
//!
//! Next, create a [`Config`] struct, which represents the SPI peripheral in its
//! disabled state. A `Config` is specified with three type parameters: the
//! [`Pads`] type; an [`OpMode`], which defaults to [`Master`]; and a
//! [`Size`] type that varies by chip. [`Size`] essentially acts as a trait
//! alias. On SAMD11 and SAMD21 chips, it represents the
//! `CharSize`, which can either be `EightBit` or `NineBit`.
//! While on SAMx5x chips, it represents the transaction
//! `Length`
//! in bytes, using type-level numbers provided by the [`typenum`] crate. Valid
//! transaction lengths, from `U1` to `U255`, are re-exported in the
//! `lengths`
//! sub-module.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::sercom::spi::Master;
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMD11/SAMD21-specific imports
//! use atsamd_hal::sercom::spi::NineBit;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::spi::lengths::U2;
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! // SAMD11/SAMD21 version
//! type Pads = spi::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, NineBit>;
//!
//! // SAMx5x version
//! type Pads = spi::PadsFromIds<Sercom0, IoSet1, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, U2>;
//! ```
//!
//! For simplicity, this module ignores character size on SAMx5x chips. Instead,
//! the SPI peripheral is always configured to use 32-bit extension mode and the
//! hardware `LENGTH` counter. Note that, due to a hardware bug, `ICSPACE` must
//! be at least one when using the length counter. See the silicon errata for
//! more details.
//!
//! Upon creation, the [`Config`] takes ownership of both the [`Pads`] and the
//! PAC [`Sercom`] struct. It takes a reference to the `PM` or `MCLK`, so that
//! it can enable the APB clock, and it takes a frequency to indicate the GCLK
//! configuration. Users are responsible for correctly configuring the GCLK.
//!
//! ```
//! use atsamd_hal::time::U32Ext;
//!
//! // Not shown: configure GCLK for 10 MHz
//!
//! // SAMD11/SAMD21 version
//! let pm = peripherals.PM;
//! let sercom = peripherals.SERCOM0;
//! let freq = 10.mhz();
//! let config = spi::Config::new(&pm, sercom, pads, freq);
//!
//! // SAMx5x version
//! let mclk = peripherals.MCLK;
//! let sercom = peripherals.SERCOM0;
//! let freq = 10.mhz();
//! let config = spi::Config::new(&mclk, sercom, pads, freq);
//! ```
//!
//! The [`Config`] uses two different APIs for configuration. For most
//! parameters, it provides `get_` and `set_` methods that take `&self` and
//! `&mut self` respectively, e.g. [`get_bit_order`](Config::get_bit_order) and
//! [`set_bit_order`](Config::set_bit_order). However, because `Config` tracks
//! the [`OpMode`] and [`Size`] at compile-time, which requires changing the
//! corresponding type parameters, `Config` also provides a builder-pattern API,
//! where methods take and return `self`, e.g. [`bit_order`](Config::bit_order).
//!
//! Once configured, the [`enable`] method consumes the `Config` and returns an
//! enabled [`Spi`] struct that can be used for transactions. Because the
//! `enable` function takes the `Config` as `self`, the builder-pattern API is
//! usually the more ergonomic option.
//!
//! ```
//! use embedded_hal::spi::MODE_1;
//!
//! // SAMD11/SAMD21 version
//! let spi = spi::Config::new(&pm, sercom, pads, freq)
//!     .baud(1.mhz())
//!     .char_size::<NineBit>()
//!     .bit_order(BitOrder::LsbFirst)
//!     .spi_mode(MODE_1)
//!     .enable();
//!
//! // SAMx5x version
//! let spi = spi::Config::new(&mclk, sercom, pads, freq)
//!     .baud(1.mhz())
//!     .length::<U2>()
//!     .bit_order(BitOrder::LsbFirst)
//!     .spi_mode(MODE_1)
//!     .enable();
//! ```
//!
//! To be accepted as a [`ValidConfig`], the `Config` must have a set of
//! [`ValidPads`] that matches its [`OpMode`]. In particular, the `SS` pad must
//! be [`NoneT`] for [`Master`] mode, where the user is expected to handle it
//! manaully. But it must be [`SomePad`] in [`MasterHWSS`] and [`Slave`] modes,
//! where it is controlled by the hardware.
//!
//! # Using a functional `Spi` peripheral
//!
//! An [`Spi`] struct has two type parameters. The first is the corresponding
//! `Config`, while the second represents its [`Capability`], i.e. [`Rx`],
//! [`Tx`] or [`Duplex`]. The [`enable`] function determines the `Capability`
//! automaically from the set of [`ValidPads`].
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::sercom::spi::{Master, Rx};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMD11/SAMD21-specific imports
//! use atsamd_hal::sercom::spi::NineBit;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::spi::lengths::U2;
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! // SAMD11/SAMD21 version
//! type Pads = spi::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, NineBit>;
//! type Spi = spi::Spi<Config, Rx>;
//!
//! // SAMx5x version
//! type Pads = spi::PadsFromIds<Sercom0, IoSet1, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, U2>;
//! type Spi = spi::Spi<Config, Rx>;
//! ```
//!
//! Only [`Spi`] structs can actually perform transactions. To do so, use the
//! various embedded HAL traits, like
//! [`spi::SpiBus`](crate::ehal::spi::SpiBus),
//! [`embedded_io::Read`], [`embedded_io::Write`],
//! [`embedded_hal_nb::serial::Read`](crate::ehal_nb::serial::Read), or
//! [`embedded_hal_nb::serial::Write`](crate::ehal_nb::serial::Write).
//! See the [`impl_ehal`] module documentation for more details about the
//! specific trait implementations, which vary based on [`Size`] and
//! [`Capability`].
//!
//! ```
//! use nb::block;
//! use crate::ehal_02::spi::FullDuplex;
//!
//! block!(spi.send(0xAA55));
//! let rcvd: u16 = block!(spi.read());
//! ```
//!
//! ## Flushing the bus
//!
//! The [`SpiBus`](crate::ehal::spi::SpiBus) methods do not flush the bus when a
//! transaction is complete. This is in part to increase performance and allow
//! for pipelining SPI transactions. This is true for both sync and async
//! operation. As such, you should ensure you manually call
//! [`flush`](crate::ehal::spi::SpiBus::flush) when:
//! * You must synchronize SPI activity and GPIO activity, for example before
//!   deasserting a CS pin.
//! * Before deinitializing the SPI peripheral.
//!
//! Take note that the [`SpiDevice`](crate::ehal::spi::SpiDevice)
//! implementations automatically take care of flushing, so no further flushing
//! is needed.
//!
//! [See the embedded-hal spec](https://docs.rs/embedded-hal/latest/embedded_hal/spi/index.html#flushing)
//! for more information.
//!
//! # [`PanicOnRead`] and [`PanicOnWrite`]
//!
//! Some driver libraries take a type implementing [`embedded_hal::spi::SpiBus`]
//! or [`embedded_hal::spi::SpiDevice`], even when they only need to receive or
//! send data, but not both. A good example is WS2812 addressable LEDs
//! (neopixels), which only take a data input. Therefore, their protocol can be
//! implemented with a [`Tx`] [`Spi`] that only has a MOSI pin. In another
//! example, often LCD screens only have a MOSI and SCK pins. In order to
//! unnecessarily tying up pins in the [`Spi`] struct, and provide an escape
//! hatch for situations where constructing the [`Spi`] struct would otherwise
//! be impossible, we provide the [`PanicOnRead`] and [`PanicOnWrite`] wrapper
//! types, which implement [`embedded_hal::spi::SpiBus`].
//!
//! As the names imply, they panic if an incompatible method is called. See
//! [`Spi::into_panic_on_write`] and [`Spi::into_panic_on_read`].
//!
//! [`PanicOnRead`] and [`PanicOnWrite`] are compatible with DMA.
//!
//! # Using SPI with DMA <span class="stab portability" title="Available on crate feature `dma` only"><code>dma</code></span>
//!
//! This HAL includes support for DMA-enabled SPI transfers. Use
//! [`Spi::with_dma_channels`] ([`Duplex`] and [`Rx`]), and
//! [`Spi::with_tx_channel`] ([`Tx`]-only) to attach DMA channels to the [`Spi`]
//! struct. A DMA-enabled [`Spi`] implements the
//! blocking [`embedded_hal::spi::SpiBus`], [`embedded_io::Write`] and/or
//! [`embedded_io::Read`] traits, which can be used to perform SPI transactions
//! which are fast, continuous and low jitter, even if they are preemped by a
//! higher priority interrupt.
//!
//! ```
//! // Assume channel0 and channel1 are configured `dmac::Channel`, and spi a
//! // fully-configured `Spi`
//!
//! // Create data to send
//! let buffer: [u8; 50] = [0xff; 50];
//!
//! // Attach DMA channels
//! let spi = spi.with_dma_channels(channel0, channel1);
//!
//! // Perform the transfer
//! spi.write(&mut buffer)?;
//! ```
//!
//! # `async` operation <span class="stab portability" title="Available on crate feature `async` only"><code>async</code></span>
//!
//! An [`Spi`] can be used for
//! `async` operations. Configuring a [`Spi`] in async mode is relatively
//! simple:
//!
//! * Bind the corresponding `SERCOM` interrupt source to the SPI
//!   [`InterruptHandler`] (refer to the module-level [`async_hal`]
//!   documentation for more information).
//! * Turn a previously configured [`Spi`] into a [`SpiFuture`] by calling
//!   [`Spi::into_future`]
//! * Optionally, add DMA channels to RX, TX or both using
//!   [`SpiFuture::with_rx_dma_channel`] and [`SpiFuture::with_tx_dma_channel`].
//!   The API is exactly the same whether DMA channels are used or not.
//! * Use the provided async methods for reading or writing to the SPI
//!   peripheral. [`SpiFuture`] implements [`embedded_hal_async::spi::SpiBus`].
//!
//! `SpiFuture` implements `AsRef<Spi>` and `AsMut<Spi>` so
//! that it can be reconfigured using the regular [`Spi`] methods.
//!
//! ## Considerations when using `async` [`Spi`] with DMA <span class="stab portability" title="Available on crate feature `async` only"><code>async</code></span> <span class="stab portability" title="Available on crate feature `dma` only"><code>dma</code></span>
//!
//! * An [`Spi`] struct must be turned into an [`SpiFuture`] by calling
//!   [`Spi::into_future`] before calling `with_dma_channel`. The DMA channel
//!   itself must also be configured in async mode by using
//!   [`DmaController::into_future`](crate::dmac::DmaController::into_future).
//!   If a DMA channel is added to the [`Spi`] struct before it is turned into
//!   an [`SpiFuture`], it will not be able to use DMA in async mode.
//!
//! ```
//! // This will work
//! let spi = spi.into_future().with_dma_channels(rx_channel, tx_channel);
//!
//! // This won't
//! let spi = spi.with_dma_channels(rx_channel, tx_channel).into_future();
//! ```
//!
//! ### Safety considerations
//!
//! In `async` mode, an SPI+DMA transfer does not require `'static` source and
//! destination buffers. This, in theory, makes its use `unsafe`. However it is
//! marked as safe for better ergonomics, and to enable the implementation of
//! the [`embedded_hal_async::spi::SpiBus`] trait.
//!
//! This means that, as an user, you **must** ensure that the [`Future`]s
//! returned by the [`embedded_hal_async::spi::SpiBus`] methods may never be
//! forgotten through [`forget`] or by wrapping them with a [`ManuallyDrop`].
//!
//! The returned futures implement [`Drop`] and will automatically stop any
//! ongoing transfers; this guarantees that the memory occupied by the
//! now-dropped buffers may not be corrupted by running transfers.
//!
//! This means that using functions like [`futures::select_biased`] to implement
//! timeouts is safe; transfers will be safely cancelled if the timeout expires.
//!
//! This also means that should you [`forget`] this [`Future`] after its
//! first [`poll`] call, the transfer will keep running, ruining the
//! now-reclaimed memory, as well as the rest of your day.
//!
//! * `await`ing is fine: the [`Future`] will run to completion.
//! * Dropping an incomplete transfer is also fine. Dropping can happen, for
//!   example, if the transfer doesn't complete before a timeout expires.
//! * Dropping an incomplete transfer *without running its destructor* is
//!   **unsound** and will trigger undefined behavior.
//!
//! ```ignore
//! async fn always_ready() {}
//!
//! let mut buffer = [0x00; 10];
//!
//! // This is completely safe
//! spi.read(&mut buffer).await?;
//!
//! // This is also safe: we launch a transfer, which is then immediately cancelled
//! futures::select_biased! {
//!     _ = spi.read(&mut buffer)?,
//!     _ = always_ready(),
//! }
//!
//! // This, while contrived, is also safe.
//! {
//!     use core::future::Future;
//!
//!     let future = spi.read(&mut buffer);
//!     futures::pin_mut!(future);
//!     // Assume ctx is a `core::task::Context` given out by the executor.
//!     // The future is polled, therefore starting the transfer
//!     future.as_mut().poll(ctx);
//!
//!     // Future is dropped here - transfer is cancelled.
//! }
//!
//! // DANGER: This is an example of undefined behavior
//! {
//!     use core::future::Future;
//!     use core::ops::DerefMut;
//!
//!     let future = core::mem::ManuallyDrop::new(spi.read(&mut buffer));
//!     futures::pin_mut!(future);
//!     // To actually make this example compile, we would need to wrap the returned
//!     // future from `i2c.read()` in a newtype that implements Future, because we
//!     // can't actually call as_mut() without being able to name the type we want
//!     // to deref to.
//!     let future_ref: &mut SomeNewTypeFuture = &mut future.as_mut();
//!     future.as_mut().poll(ctx);
//!
//!     // Future is NOT dropped here - transfer is not cancelled, resulting un UB.
//! }
//! ```
//!
//! As you can see, unsoundness is relatively hard to come by - however, caution
//! should still be exercised.
//!
//! [`enable`]: Config::enable
//! [`gpio`]: crate::gpio
//! [`Pin`]: crate::gpio::pin::Pin
//! [`PinId`]: crate::gpio::pin::PinId
//! [`PinMode`]: crate::gpio::pin::PinMode
//! [`embedded_hal::spi::SpiBus`]: crate::ehal::spi::SpiBus
//! [`embedded_hal::spi::SpiDevice`]: crate::ehal::spi::SpiDevice
//! [`async_hal`]: crate::async_hal
//! [`forget`]: core::mem::forget
//! [`ManuallyDrop`]: core::mem::ManuallyDrop
//! [`Future`]: core::future::Future
//! [`poll`]: core::future::Future::poll

use core::marker::PhantomData;

use atsamd_hal_macros::{hal_cfg, hal_docs, hal_macro_helper, hal_module};
use bitflags::bitflags;
use num_traits::AsPrimitive;

use crate::ehal;
pub use crate::ehal::spi::{Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
use crate::sercom::{pad::SomePad, ApbClkCtrl, Sercom};
use crate::time::Hertz;
use crate::typelevel::{Is, NoneT, Sealed};

mod reg;
use reg::Registers;

//=============================================================================
// Chip-specific imports
//=============================================================================

#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
use crate::pac::sercom0::spi::ctrla::Modeselect;
#[hal_cfg("sercom0-d5x")]
use crate::pac::sercom0::spim::ctrla::Modeselect;

#[hal_module(
    any("sercom0-d11", "sercom0-d21") => "spi/pads_thumbv6m.rs",
    "sercom0-d5x" => "spi/pads_thumbv7em.rs",
)]
pub mod pads {}

pub use pads::*;

#[hal_module(
    any("sercom0-d11", "sercom0-d21") => "spi/char_size.rs",
    "sercom0-d5x" => "spi/length.rs",
)]
pub mod size {}

pub use size::*;

/// Valid transaction [`Length`]s from the [`typenum`] crate
#[hal_cfg("sercom0-d5x")]
pub mod lengths {
    seq_macro::seq!(N in 1..=255 {
        pub use typenum::U~N;
    });
}

pub mod impl_ehal;

#[cfg(feature = "async")]
mod async_api;
#[cfg(feature = "async")]
pub use async_api::*;

//=============================================================================
// BitOrder
//=============================================================================

/// Define the bit order of transactions
#[repr(u8)]
#[derive(Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum BitOrder {
    LsbFirst,
    MsbFirst,
}

//=============================================================================
// Flags
//=============================================================================

const DRE: u8 = 0x01;
const TXC: u8 = 0x02;
const RXC: u8 = 0x04;
const SSL: u8 = 0x08;
const ERROR: u8 = 0x80;

pub const RX_FLAG_MASK: u8 = RXC | ERROR;
pub const TX_FLAG_MASK: u8 = DRE | TXC;

bitflags! {
    /// Interrupt bit flags for SPI transactions
    ///
    /// The available interrupt flags are `DRE`, `RXC`, `TXC`, `SSL` and
    /// `ERROR`. The binary format of the underlying bits exactly matches the
    /// `INTFLAG` register.
    #[derive(Clone, Copy)]
    pub struct Flags: u8 {
        const DRE = DRE;
        const TXC = TXC;
        const RXC = RXC;
        const SSL = SSL;
        const ERROR = ERROR;
    }
}

#[allow(dead_code)]
impl Flags {
    pub(super) const RX: Self = Self::from_bits_retain(RX_FLAG_MASK);
    pub(super) const TX: Self = Self::from_bits_retain(TX_FLAG_MASK);
}

//=============================================================================
// Status
//=============================================================================

bitflags! {
    /// Status bit flags for SPI transactions
    ///
    /// The available status flags are `BUFOVF` and `LENERR`. The binary format
    /// of the underlying bits exactly matches the `STATUS` register.
    #[derive(Clone, Copy)]
    pub struct Status: u16 {
        const BUFOVF = 0x0004;
        const LENERR = 0x0800;
    }
}

impl Status {
    /// Check whether [`Self`] originates from an error.
    ///
    /// # Errors
    ///
    /// Returns an error if `STATUS` contains `BUFOVF` or `LENERR`
    pub fn check_bus_error(self) -> Result<(), Error> {
        // Buffer overflow has priority
        if self.contains(Status::BUFOVF) {
            Err(Error::Overflow)
        } else if self.contains(Status::LENERR) {
            Err(Error::LengthError)
        } else {
            Ok(())
        }
    }
}

//=============================================================================
// Error
//=============================================================================

/// Error `enum` for SPI transactions
///
/// The SPI peripheral only has two error types, buffer overflow and transaction
/// length error.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    Overflow,
    LengthError,
    #[cfg(feature = "dma")]
    Dma(crate::dmac::Error),
}

//=============================================================================
// Operating mode
//=============================================================================

/// Type-level enum representing the SPI operating mode
///
/// See the documentation on [type-level enums] for a discussion of the pattern.
///
/// The available operating modes are [`Master`], [`MasterHWSS`] and [`Slave`].
/// In [`Master`] mode, the `SS` signal must be handled by the user, so `SS`
/// must be [`NoneT`]. In [`MasterHWSS`] mode, the hardware drives the `SS`
/// line, so [`SomePad`] is required. In [`Slave`] mode, the `SS` pad is
/// required as well, to indicate when data is valid.
///
/// [type-level enums]: crate::typelevel#type-level-enums
pub trait OpMode: Sealed {
    /// Corresponding variant from the PAC enum
    const MODE: Modeselect;
    /// Bit indicating whether hardware `SS` control is enabled
    const MSSEN: bool;
}

/// [`OpMode`] variant for Master mode
pub enum Master {}

/// [`OpMode`] variant for Master mode with hardware-controlled slave select
pub enum MasterHWSS {}

/// [`OpMode`] variant for Slave mode
pub enum Slave {}

impl Sealed for Master {}
impl Sealed for MasterHWSS {}
impl Sealed for Slave {}

impl OpMode for Master {
    const MODE: Modeselect = Modeselect::SpiMaster;
    const MSSEN: bool = false;
}

impl OpMode for MasterHWSS {
    const MODE: Modeselect = Modeselect::SpiMaster;
    const MSSEN: bool = true;
}

impl OpMode for Slave {
    const MODE: Modeselect = Modeselect::SpiSlave;
    const MSSEN: bool = false;
}

/// Marker trait for Master operating modes
///
/// This trait is implemented for [`Master`] and [`MasterHWSS`] but not for
/// [`Slave`].
pub trait MasterMode: OpMode {}

impl MasterMode for Master {}
impl MasterMode for MasterHWSS {}

//=============================================================================
// Size
//=============================================================================

/// Type alias for the width of the `DATA` register
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
pub type DataWidth = u16;

/// Type alias for the width of the `DATA` register
#[hal_cfg("sercom0-d5x")]
pub type DataWidth = u32;

/// Trait alias whose definition varies by chip
///
/// On SAMD11 and SAMD21 chips, this represents the [`CharSize`].
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
pub trait Size: CharSize {}

#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
impl<C: CharSize> Size for C {}

/// Type alias for the default [`Size`] type, which varies by chip
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
pub type DefaultSize = EightBit;

/// Trait alias whose definition varies by chip
///
/// On SAMx5x chips, this represents the transaction [`Length`].
#[hal_cfg("sercom0-d5x")]
pub trait Size: Length {}

#[hal_cfg("sercom0-d5x")]
impl<L: Length> Size for L {}

/// Type alias for the default [`Size`] type, which varies by chip
#[hal_cfg("sercom0-d5x")]
pub type DefaultSize = typenum::U1;

//==============================================================================
// AtomicSize
//==============================================================================

/// Marker trait for transaction [`Size`]s that can be completed in a single
/// read or write of the `DATA` register
pub trait AtomicSize: Size {}

#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
impl<C: CharSize> AtomicSize for C {}

#[hal_cfg("sercom0-d5x")]
seq_macro::seq!(N in 1..=4 {
    impl AtomicSize for lengths::U~N {}
});

//==============================================================================
// Capability
//==============================================================================

/// Type-level enum representing the simplex or duplex transaction capability
///
/// The available, type-level variants are [`Rx`], [`Tx`] and [`Duplex`]. See
/// the [type-level enum] documentation for more details.
///
/// [type-level enum]: crate::typelevel#type-level-enums
pub trait Capability: Sealed + Default {
    const RX_ENABLE: bool;
}

/// Sub-set of [`Capability`] variants that can receive data, i.e. [`Rx`] and
/// [`Duplex`]
pub trait Receive: Capability {}

/// Sub-set of [`Capability`] variants that can transmit dat, i.e. [`Tx`] and
/// [`Duplex`]
pub trait Transmit: Capability {}

/// Type-level variant of the [`Capability`] enum for simplex, [`Receive`]-only
/// transactions
///
/// [`Spi`] structs are `Rx` when the `DO` (Data Out) type is [`NoneT`] in the
/// corresponding [`Pads`] struct.
///
/// While the [`Tx`] and [`Duplex`] structs are zero-sized, this struct is not.
/// Because an SPI master must initiate all transactions, using it in a simplex,
/// [`Receive`]-only context is slightly complicated. In that case, the [`Spi`]
/// struct must track whether a transaction needs to be started or is already in
/// progress. This struct contains a `bool` to track that progress.
#[derive(Default)]
pub struct Rx {
    pub(super) in_progress: bool,
}

impl Sealed for Rx {}
impl Capability for Rx {
    const RX_ENABLE: bool = true;
}
impl Receive for Rx {}

/// Type-level variant of the [`Capability`] enum for simplex, [`Transmit`]-only
/// transactions
///
/// [`Spi`] structs are `Tx` when the `DI` (Data In) type is [`NoneT`] in the
/// corresponding [`Pads`] struct.
#[derive(Default)]
pub struct Tx;

impl Sealed for Tx {}
impl Capability for Tx {
    const RX_ENABLE: bool = false;
}
impl Transmit for Tx {}

/// Type-level variant of the [`Capability`] enum for duplex transactions
///
/// [`Spi`] structs are `Duplex` when both the `DI` and `DO` [`Pads`] are
/// [`SomePad`].
/// corresponding [`Pads`] struct.
#[derive(Default)]
pub struct Duplex;

impl Sealed for Duplex {}
impl Capability for Duplex {
    const RX_ENABLE: bool = true;
}
impl Receive for Duplex {}
impl Transmit for Duplex {}

//=============================================================================
// Config
//=============================================================================

/// A configurable SPI peripheral in its disabled state
///
/// See the [module-level](super) documentation for more details on declaring
/// and instantiating `Pads` types.
pub struct Config<P, M = Master, Z = DefaultSize>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
{
    regs: Registers<P::Sercom>,
    pads: P,
    mode: PhantomData<M>,
    size: PhantomData<Z>,
    freq: Hertz,
    nop_word: DataWidth,
}

impl<P: ValidPads> Config<P> {
    /// Create a new [`Config`] in the default configuration.
    #[inline]
    #[hal_macro_helper]
    fn default(sercom: P::Sercom, pads: P, freq: impl Into<Hertz>) -> Self {
        let mut regs = Registers { sercom };
        regs.reset();
        regs.set_op_mode(Master::MODE, Master::MSSEN);
        regs.set_dipo_dopo(P::DIPO_DOPO);
        #[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
        regs.set_char_size(EightBit::BITS);
        #[hal_cfg("sercom0-d5x")]
        regs.set_length(1);
        Self {
            regs,
            pads,
            mode: PhantomData,
            size: PhantomData,
            freq: freq.into(),
            nop_word: 0x00.as_(),
        }
    }

    #[hal_docs(
        {
            /// Create a new [`Config`] in the default configuration
            ///
            /// This function will enable the corresponding APB clock, reset the
            /// [`Sercom`] peripheral, and return a [`Config`] in the default
            /// configuration. The default [`OpMode`] is [`Master`], while the default
            /// [`Size`] is an
        }
        any("sercom0-d11", "sercom0-d21") => {
            /// [`EightBit`] [`CharSize`]
        }
        "sercom0-d5x" => {
            /// `EightBit` `CharSize`
        }
        {
            /// for SAMD11 and SAMD21 chips or a
        }
        any("sercom0-d11", "sercom0-d21") => {
            /// `Length` of `U1`
        }
        "sercom0-d5x" => {
            /// [`Length`] of `U1`
        }
        {
            /// for SAMx5x chips. Note that [`Config`] takes ownership of both the
            /// PAC [`Sercom`] struct as well as the [`Pads`].
            ///
            /// Users must configure GCLK manually. The `freq` parameter represents the
            /// GCLK frequency for this [`Sercom`] instance.
        }
    )]
    #[inline]
    pub fn new(
        apb_clk_ctrl: &ApbClkCtrl,
        mut sercom: P::Sercom,
        pads: P,
        freq: impl Into<Hertz>,
    ) -> Self {
        sercom.enable_apb_clock(apb_clk_ctrl);
        Self::default(sercom, pads, freq)
    }
}

impl<P, M, Z> Config<P, M, Z>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
{
    /// Change the [`OpMode`] or [`Size`]
    #[inline]
    fn change<M2, Z2>(self) -> Config<P, M2, Z2>
    where
        M2: OpMode,
        Z2: Size,
    {
        Config {
            regs: self.regs,
            pads: self.pads,
            mode: PhantomData,
            size: PhantomData,
            freq: self.freq,
            nop_word: self.nop_word,
        }
    }

    /// Obtain a reference to the PAC `SERCOM` struct
    ///
    /// # Safety
    ///
    /// Directly accessing the `SERCOM` could break the invariants of the
    /// type-level tracking in this module, so it is unsafe.
    #[inline]
    pub unsafe fn sercom(&self) -> &P::Sercom {
        &self.regs.sercom
    }

    /// Trigger the [`Sercom`]'s SWRST and return a [`Config`] in the
    /// default configuration.
    #[inline]
    pub fn reset(self) -> Config<P> {
        Config::default(self.regs.sercom, self.pads, self.freq)
    }

    /// Consume the [`Config`], reset the peripheral, and return the [`Sercom`]
    /// and [`Pads`]
    #[inline]
    pub fn free(mut self) -> (P::Sercom, P) {
        self.regs.reset();
        (self.regs.sercom, self.pads)
    }

    /// Obtain a pointer to the `DATA` register. Necessary for DMA transfers.
    #[inline]
    #[cfg(feature = "dma")]
    pub(super) fn data_ptr(&self) -> *mut Z::Word {
        self.regs.data_ptr::<Z>()
    }

    /// Change the [`OpMode`]
    #[inline]
    pub fn op_mode<M2: OpMode>(mut self) -> Config<P, M2, Z> {
        self.regs.set_op_mode(M2::MODE, M2::MSSEN);
        self.change()
    }

    /// Change the [`CharSize`] using the builder pattern
    #[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
    #[inline]
    pub fn char_size<C2: CharSize>(mut self) -> Config<P, M, C2> {
        self.regs.set_char_size(C2::BITS);
        self.change()
    }

    /// Change the transaction [`Length`] using the builder pattern
    ///
    /// To use a run-time dynamic length, set the [`Length`] type to
    /// [`DynLength`] and then use the [`dyn_length`] method.
    ///
    /// [`dyn_length`]: Config::dyn_length
    #[hal_cfg("sercom0-d5x")]
    #[inline]
    pub fn length<L2: Length>(mut self) -> Config<P, M, L2> {
        self.regs.set_length(L2::U8);
        self.change()
    }

    /// Get the clock polarity
    #[inline]
    pub fn get_cpol(&self) -> Polarity {
        self.regs.get_cpol()
    }

    /// Set the clock polarity
    #[inline]
    pub fn set_cpol(&mut self, cpol: Polarity) {
        self.regs.set_cpol(cpol);
    }

    /// Set the clock polarity using the builder pattern
    #[inline]
    pub fn cpol(mut self, cpol: Polarity) -> Self {
        self.set_cpol(cpol);
        self
    }

    /// Get the clock phase
    #[inline]
    pub fn get_cpha(&self) -> Phase {
        self.regs.get_cpha()
    }

    /// Set the clock phase
    #[inline]
    pub fn set_cpha(&mut self, cpha: Phase) {
        self.regs.set_cpha(cpha)
    }

    /// Set the clock phase using the builder pattern
    #[inline]
    pub fn cpha(mut self, cpha: Phase) -> Self {
        self.set_cpha(cpha);
        self
    }

    /// Get the SPI mode (clock polarity & phase)
    #[inline]
    pub fn get_spi_mode(&self) -> ehal::spi::Mode {
        self.regs.get_spi_mode()
    }

    /// Set the SPI mode (clock polarity & phase)
    #[inline]
    pub fn set_spi_mode(&mut self, mode: ehal::spi::Mode) {
        self.regs.set_spi_mode(mode);
    }

    /// Set the SPI mode (clock polarity & phase) using the builder pattern
    #[inline]
    pub fn spi_mode(mut self, mode: ehal::spi::Mode) -> Self {
        self.set_spi_mode(mode);
        self
    }

    /// Get the bit order of transmission (MSB/LSB first)
    ///
    /// This only affects the order of bits within each byte. Bytes are always
    /// transferred in little endian order from the 32-bit DATA register.
    #[inline]
    pub fn get_bit_order(&self) -> BitOrder {
        self.regs.get_bit_order()
    }

    /// Set the bit order of transmission (MSB/LSB first) using the builder
    /// pattern
    ///
    /// This only affects the order of bits within each byte. Bytes are always
    /// transferred in little endian order from the 32-bit DATA register.
    #[inline]
    pub fn set_bit_order(&mut self, order: BitOrder) {
        self.regs.set_bit_order(order);
    }

    /// Set the bit order of transmission (MSB/LSB first) using the builder
    /// pattern
    ///
    /// This only affects the order of bits within each byte. Bytes are always
    /// transferred in little endian order from the 32-bit DATA register.
    #[inline]
    pub fn bit_order(mut self, order: BitOrder) -> Self {
        self.set_bit_order(order);
        self
    }

    /// Get the NOP word
    ///
    /// This word is used when reading in Duplex mode, since an equal number of
    /// words must be sent in order to avoid overflow errors.
    pub fn get_nop_word(&self) -> DataWidth {
        self.nop_word
    }

    /// Set the NOP word
    ///
    /// This word is used when reading in Duplex mode, since an equal number of
    /// words must be sent in order to avoid overflow errors.
    pub fn set_nop_word(&mut self, nop_word: DataWidth) {
        self.nop_word = nop_word;
    }

    /// Set the NOP word using the builder pattern
    ///
    /// This word is used when reading in Duplex mode, since an equal number of
    /// words must be sent in order to avoid overflow errors.
    pub fn nop_word(mut self, nop_word: DataWidth) -> Self {
        self.nop_word = nop_word;
        self
    }

    /// Get the baud rate
    ///
    /// The returned baud rate may not exactly match what was set.
    #[inline]
    pub fn get_baud(&mut self) -> Hertz {
        self.regs.get_baud(self.freq)
    }

    /// Set the baud rate
    ///
    /// This function will calculate the best BAUD register setting based on the
    /// stored GCLK frequency and desired baud rate. The maximum baud rate is
    /// half the GCLK frequency. The minimum baud rate is the GCLK frequency /
    /// 512. Values outside this range will saturate at the extremes.
    #[inline]
    pub fn set_baud(&mut self, baud: Hertz) {
        self.regs.set_baud(self.freq, baud);
    }

    /// Set the baud rate using the builder API
    ///
    /// This function will calculate the best BAUD register setting based on the
    /// stored GCLK frequency and desired baud rate. The maximum baud rate is
    /// half the GCLK frequency. The minimum baud rate is the GCLK frequency /
    /// 512. Values outside this range will saturate at the extremes.
    #[inline]
    pub fn baud(mut self, baud: Hertz) -> Self {
        self.set_baud(baud);
        self
    }

    /// Read the enabled state of the immediate buffer overflow notification
    ///
    /// If set to true, an [`Error::Overflow`] will be issued as soon as an
    /// overflow occurs. Otherwise, it will not be issued until its place within
    /// the data stream.
    #[inline]
    pub fn get_ibon(&self) -> bool {
        self.regs.get_ibon()
    }

    /// Enable or disable the immediate buffer overflow notification
    ///
    /// If set to true, an [`Error::Overflow`] will be issued as soon as an
    /// overflow occurs. Otherwise, it will not be issued until its place within
    /// the data stream.
    #[inline]
    pub fn set_ibon(&mut self, enabled: bool) {
        self.regs.set_ibon(enabled);
    }

    /// Enable or disable the immediate buffer overflow notification using the
    /// builder API
    ///
    /// If set to true, an [`Error::Overflow`] will be issued as soon as an
    /// overflow occurs. Otherwise, it will not be issued until its place within
    /// the data stream.
    #[inline]
    pub fn ibon(mut self, enabled: bool) -> Self {
        self.set_ibon(enabled);
        self
    }

    /// Read the enable state of run in standby mode
    #[inline]
    pub fn get_run_in_standby(&self) -> bool {
        self.regs.get_run_in_standby()
    }

    /// Enable or disable run in standby mode
    #[inline]
    pub fn set_run_in_standby(&mut self, enabled: bool) {
        self.regs.set_run_in_standby(enabled);
    }

    /// Enable or disable run in standby mode using the builder API
    #[inline]
    pub fn run_in_standby(mut self, enabled: bool) -> Self {
        self.set_run_in_standby(enabled);
        self
    }

    /// Enable the SPI peripheral
    ///
    /// SPI transactions are not possible until the peripheral is enabled.
    /// This function is limited to [`ValidConfig`]s.
    #[inline]
    pub fn enable(mut self) -> Spi<Self, P::Capability>
    where
        Self: ValidConfig,
    {
        if P::Capability::RX_ENABLE {
            self.regs.rx_enable();
        }
        self.regs.enable();
        Spi {
            config: self,
            capability: P::Capability::default(),
            _rx_channel: NoneT,
            _tx_channel: NoneT,
        }
    }
}

#[hal_cfg("sercom0-d5x")]
impl<P, M> Config<P, M, DynLength>
where
    P: ValidPads,
    M: OpMode,
{
    /// Get the transaction length
    #[inline]
    pub fn get_dyn_length(&self) -> u8 {
        self.regs.get_length()
    }

    /// Set the transaction length
    ///
    /// Write the LENGTH register to set the transaction length. If the length
    /// is zero, it will be set to 1.
    #[inline]
    pub fn set_dyn_length(&mut self, length: u8) {
        self.regs.set_length(length);
    }

    /// Set the transaction length using the builder API
    ///
    /// Write the LENGTH register to set the transaction length. If the length
    /// is zero, it will be set to 1.
    #[inline]
    pub fn dyn_length(mut self, length: u8) -> Self {
        self.set_dyn_length(length);
        self
    }
}

//=============================================================================
// AnyConfig
//=============================================================================

/// Type class for all possible [`Config`] types
///
/// This trait uses the [`AnyKind`] trait pattern to create a [type class] for
/// [`Config`] types. See the `AnyKind` documentation for more details on the
/// pattern.
///
/// In addition to the normal, `AnyKind` associated types. This trait also
/// copies the [`Sercom`], [`Capability`] and [`Word`] types, to make it easier
/// to apply bounds to these types at the next level of abstraction.
///
/// [`AnyKind`]: crate::typelevel#anykind-trait-pattern
/// [type class]: crate::typelevel#type-classes
pub trait AnyConfig: Is<Type = SpecificConfig<Self>> {
    type Sercom: Sercom;
    type Pads: ValidPads<Sercom = Self::Sercom>;
    type Capability: Capability;
    type OpMode: OpMode;
    type Size: Size;
    type Word: 'static;
}

/// Type alias to recover the specific [`Config`] type from an implementation of
/// [`AnyConfig`]
pub type SpecificConfig<C> =
    Config<<C as AnyConfig>::Pads, <C as AnyConfig>::OpMode, <C as AnyConfig>::Size>;

impl<P, M, Z> Sealed for Config<P, M, Z>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
{
}

impl<P, M, Z> AnyConfig for Config<P, M, Z>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
{
    type Sercom = P::Sercom;
    type Pads = P;
    type Capability = P::Capability;
    type OpMode = M;
    type Size = Z;
    type Word = Z::Word;
}

impl<P, M, Z> AsRef<Self> for Config<P, M, Z>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
{
    #[inline]
    fn as_ref(&self) -> &Self {
        self
    }
}

impl<P, M, Z> AsMut<Self> for Config<P, M, Z>
where
    P: ValidPads,
    M: OpMode,
    Z: Size,
{
    #[inline]
    fn as_mut(&mut self) -> &mut Self {
        self
    }
}

//=============================================================================
// ValidConfig
//=============================================================================

/// Marker trait for valid SPI [`Config`]urations
///
/// A functional SPI peripheral must have, at a minimum, an SCLK pad and
/// either a Data In or a Data Out pad. Dependeing on the [`OpMode`], an SS
/// pad may also be required.
///
/// The `ValidConfig` trait is implemented only for valid combinations of
/// [`Pads`] and [`OpMode`]. No [`Config`] is valid if the SCK pad is [`NoneT`]
/// or if both the Data In and Data Out pads are `NoneT`. When in [`Master`]
/// `OpMode`, the `SS` pad must be `NoneT`, while in [`MasterHWSS`] or
/// [`Slave`] [`OpMode`], the SS pad must be [`SomePad`].
pub trait ValidConfig: AnyConfig {}

impl<P, Z> ValidConfig for Config<P, Master, Z>
where
    P: ValidPads<SS = NoneT>,
    Z: Size,
{
}

impl<P, Z> ValidConfig for Config<P, MasterHWSS, Z>
where
    P: ValidPads,
    Z: Size,
    P::SS: SomePad,
{
}

impl<P, Z> ValidConfig for Config<P, Slave, Z>
where
    P: ValidPads,
    Z: Size,
    P::SS: SomePad,
{
}

//=============================================================================
// Spi
//=============================================================================

/// An enabled SPI peripheral that can perform transactions
///
/// See the [`impl_ehal`] documentation for details on the implementations of
/// the embedded HAL traits, which vary based on [`Size`] and [`Capability`].
pub struct Spi<C, A, RxDma = NoneT, TxDma = NoneT>
where
    C: ValidConfig,
    A: Capability,
{
    config: C,
    capability: A,
    _rx_channel: RxDma,
    _tx_channel: TxDma,
}

/// Get a shared reference to the underlying [`Config`] struct
///
/// This can be used to call the various `get_*` functions on `Config`
impl<C, A> AsRef<SpecificConfig<C>> for Spi<C, A>
where
    C: ValidConfig,
    A: Capability,
{
    #[inline]
    fn as_ref(&self) -> &SpecificConfig<C> {
        self.config.as_ref()
    }
}

impl<C, A, RxDma, TxDma> Spi<C, A, RxDma, TxDma>
where
    C: ValidConfig,
    A: Capability,
{
    /// Obtain a pointer to the `DATA` register. Necessary for DMA transfers.
    #[inline]
    #[cfg(feature = "dma")]
    pub(super) fn data_ptr(&self) -> *mut C::Word
    where
        C::Size: Size<Word = C::Word>,
    {
        self.config.as_ref().data_ptr()
    }

    /// Change the transaction [`Length`]
    ///
    /// Changing the transaction [`Length`] while is enabled is permissible but
    /// dangerous. If you have sent or received *any* bytes at the current
    /// [`Length`], you **must** wait for a TXC flag before changing to a new
    /// [`Length`].
    #[inline]
    #[allow(clippy::type_complexity)]
    #[hal_cfg("sercom0-d5x")]
    pub fn length<L: Length>(self) -> Spi<Config<C::Pads, C::OpMode, L>, A, RxDma, TxDma>
    where
        Config<C::Pads, C::OpMode, L>: ValidConfig,
    {
        Spi {
            config: self.config.into().length(),
            capability: self.capability,
            _rx_channel: self._rx_channel,
            _tx_channel: self._tx_channel,
        }
    }

    /// Update the SPI configuration.
    ///
    /// Calling this method will temporarily disable the SERCOM peripheral, as
    /// some registers are enable-protected. This may interrupt any ongoing
    /// transactions.
    #[inline]
    pub fn reconfigure(&mut self, update: impl FnOnce(&mut SpecificConfig<C>)) {
        self.config.as_mut().regs.disable();
        update(self.config.as_mut());
        self.config.as_mut().regs.enable();
    }

    /// Enable interrupts for the specified flags
    #[inline]
    pub fn enable_interrupts(&mut self, flags: Flags) {
        self.config.as_mut().regs.enable_interrupts(flags)
    }

    /// Disable interrupts for the specified flags
    #[inline]
    pub fn disable_interrupts(&mut self, flags: Flags) {
        self.config.as_mut().regs.disable_interrupts(flags);
    }

    /// Read the interrupt flags
    #[inline]
    pub fn read_flags(&self) -> Flags {
        self.config.as_ref().regs.read_flags()
    }

    /// Clear the corresponding interrupt flags
    ///
    /// Only the ERROR, SSL and TXC flags can be cleared.
    ///
    /// **Note:** The implementation of of [`serial::Write::flush`] waits on and
    /// clears the `TXC` flag. Manually clearing this flag could cause it to
    /// hang indefinitely.
    ///
    /// [`serial::Write::flush`]: embedded_hal::serial::Write::flush
    #[inline]
    pub fn clear_flags(&mut self, flags: Flags) {
        self.config.as_mut().regs.clear_flags(flags);
    }

    /// Read the error status flags
    #[inline]
    pub fn read_status(&self) -> Status {
        self.config.as_ref().regs.read_status()
    }

    /// Clear the corresponding error status flags
    #[inline]
    pub fn clear_status(&mut self, status: Status) {
        self.config.as_mut().regs.clear_status(status);
    }

    /// Try to read the interrupt flags, but first check the error status flags.
    #[inline]
    pub fn read_flags_errors(&self) -> Result<Flags, Error> {
        self.config.as_ref().regs.read_flags_errors()
    }

    /// Read from the DATA register
    ///
    /// # Safety
    ///
    /// Reading from the data register directly is `unsafe`, because it will
    /// clear the RXC flag, which could break assumptions made elsewhere in
    /// this module.
    #[inline]
    pub unsafe fn read_data(&mut self) -> DataWidth {
        self.config.as_mut().regs.read_data()
    }

    /// Write to the DATA register
    ///
    /// # Safety
    ///
    /// Writing to the data register directly is `unsafe`, because it will clear
    /// the DRE flag, which could break assumptions made elsewhere in this
    /// module.
    #[inline]
    pub unsafe fn write_data(&mut self, data: DataWidth) {
        self.config.as_mut().regs.write_data(data);
    }

    /// Disable the SPI peripheral and return the [`Config`] struct
    #[inline]
    pub fn disable(mut self) -> C {
        self.config.as_mut().regs.rx_disable();
        self.config.as_mut().regs.disable();
        self.config
    }

    /// Block until at least one of the flags specified in `flags`, or `ERROR`,
    /// is set.
    ///
    /// Returns `Err(Error)` if an error is detected; also clears the ERROR
    /// interrupt flag and the affected STATUS flags.
    fn block_on_flags(&mut self, flags: Flags) -> Result<(), Error> {
        while !self.read_flags().intersects(flags | Flags::ERROR) {
            core::hint::spin_loop();
        }
        let flags = self.read_flags();
        self.check_and_clear_error(flags)
    }

    #[inline]
    fn check_and_clear_error(&mut self, flags: Flags) -> Result<(), Error> {
        if flags.contains(Flags::ERROR) {
            let errors = self.read_status();
            // Clear all status flags at once; BUFOVF has priority, and will mask LENERR if
            // both show up at the same time.
            self.clear_status(errors);
            self.clear_flags(Flags::ERROR);
            return errors.check_bus_error();
        }

        Ok(())
    }
}

impl<C, D> Spi<C, D>
where
    C: ValidConfig,
    D: Receive,
    C::OpMode: MasterMode,
{
    /// Attach RX and TX DMA channels to this [`Spi`]. Its
    /// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
    /// carry out its transactions. In Master mode, since even read SPI
    /// transaction necessarily involve a write, [`Rx`]-only must take two
    /// DMA channels, just the same as if it were [`Duplex`].
    #[cfg(feature = "dma")]
    pub fn with_dma_channels<R, T>(self, rx: R, tx: T) -> Spi<C, D, R, T>
    where
        R: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
        T: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
    {
        Spi {
            capability: self.capability,
            config: self.config,
            _rx_channel: rx,
            _tx_channel: tx,
        }
    }
}

#[cfg(feature = "dma")]
impl<C, D, RxDma, TxDma, S> Spi<C, D, RxDma, TxDma>
where
    C: ValidConfig,
    D: Capability,
    RxDma: crate::dmac::AnyChannel<Status = S>,
    TxDma: crate::dmac::AnyChannel<Status = S>,
    S: crate::dmac::ReadyChannel,
{
    /// Reclaim the DMA channels. Any subsequent SPI transaction will not use
    /// DMA.
    pub fn take_dma_channels(self) -> (Spi<C, D, NoneT, NoneT>, RxDma, TxDma) {
        (
            Spi {
                capability: self.capability,
                config: self.config,
                _rx_channel: NoneT,
                _tx_channel: NoneT,
            },
            self._rx_channel,
            self._tx_channel,
        )
    }
}

#[cfg(feature = "dma")]
impl<C> Spi<C, Duplex>
where
    C: ValidConfig<OpMode = Slave>,
{
    /// Attach a DMA channel to this [`Spi`]. Its
    /// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
    /// carry out its transactions. In Slave mode, a [`Duplex`] [`Spi`] needs
    /// two DMA channels.
    #[cfg(feature = "dma")]
    pub fn with_dma_channels_slave<R, T>(self, rx: R, tx: T) -> Spi<C, Duplex, R, T>
    where
        R: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
        T: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
    {
        Spi {
            capability: self.capability,
            config: self.config,
            _rx_channel: rx,
            _tx_channel: tx,
        }
    }
}

#[cfg(feature = "dma")]
impl<C> Spi<C, Rx>
where
    C: ValidConfig<OpMode = Slave>,
{
    /// Attach a DMA channel to this [`Spi`]. Its
    /// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
    /// carry out its transactions. In Slave mode, a [`Rx`] [`Spi`] only needs a
    /// single DMA channel.
    #[cfg(feature = "dma")]
    pub fn with_rx_channel<R>(self, rx: R) -> Spi<C, Rx, R, NoneT>
    where
        R: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
    {
        Spi {
            capability: self.capability,
            config: self.config,
            _rx_channel: rx,
            _tx_channel: NoneT,
        }
    }
}

#[cfg(feature = "dma")]
impl<C, D, R, T, S> Spi<C, D, R, T>
where
    C: ValidConfig,
    D: Receive,
    R: crate::dmac::AnyChannel<Status = S>,
    S: crate::dmac::ReadyChannel,
{
    /// Reclaim the Rx DMA channel. Any subsequent SPI transaction will not use
    /// DMA.
    #[cfg(feature = "dma")]
    pub fn take_rx_channel(self) -> (Spi<C, D, NoneT, T>, R) {
        (
            Spi {
                capability: self.capability,
                config: self.config,
                _tx_channel: self._tx_channel,
                _rx_channel: NoneT,
            },
            self._rx_channel,
        )
    }
}

#[cfg(feature = "dma")]
impl<C> Spi<C, Tx>
where
    C: ValidConfig,
{
    /// Attach a DMA channel to this [`Spi`]. Its
    /// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
    /// carry out its transactions. For [`Tx`] [`Spi`]s, only a single DMA
    /// channel is necessary.
    #[cfg(feature = "dma")]
    pub fn with_tx_channel<T>(self, tx: T) -> Spi<C, Tx, NoneT, T>
    where
        T: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
    {
        Spi {
            capability: self.capability,
            config: self.config,
            _rx_channel: NoneT,
            _tx_channel: tx,
        }
    }
}

#[cfg(feature = "dma")]
impl<C, D, R, T, S> Spi<C, D, R, T>
where
    C: ValidConfig,
    D: Capability,
    T: crate::dmac::AnyChannel<Status = S>,
    S: crate::dmac::ReadyChannel,
{
    /// Reclaim the DMA channel. Any subsequent SPI transaction will not use
    /// DMA.
    pub fn take_tx_channel(self) -> (Spi<C, D, R, NoneT>, T) {
        (
            Spi {
                capability: self.capability,
                config: self.config,
                _rx_channel: self._rx_channel,
                _tx_channel: NoneT,
            },
            self._tx_channel,
        )
    }
}

/// Wrapper type around a [`Spi`] that allows using
/// [`embedded_hal::spi::SpiBus`] even though it only has RX capability. Will
/// panic if any write-adjacent method is used (ie, `write`, `transfer`,
/// `transfer_in_place`, and `flush`).
///
/// Also implements `Into<Spi>, `AsRef<Spi>` and `AsMut<Spi>` if you need to use
/// `Spi` methods.
///
/// [`embedded_hal::spi::SpiBus`]: crate::ehal::spi::SpiBus
pub struct PanicOnWrite<T: crate::ehal::spi::ErrorType>(T);

impl<C: ValidConfig, R, T> From<PanicOnWrite<Spi<C, Rx, R, T>>> for Spi<C, Rx, R, T> {
    fn from(value: PanicOnWrite<Spi<C, Rx, R, T>>) -> Self {
        value.0
    }
}

impl<C: ValidConfig, R, T> AsRef<Spi<C, Rx, R, T>> for PanicOnWrite<Spi<C, Rx, R, T>> {
    fn as_ref(&self) -> &Spi<C, Rx, R, T> {
        &self.0
    }
}
impl<C: ValidConfig, R, T> AsMut<Spi<C, Rx, R, T>> for PanicOnWrite<Spi<C, Rx, R, T>> {
    fn as_mut(&mut self) -> &mut Spi<C, Rx, R, T> {
        &mut self.0
    }
}

impl<C: ValidConfig, R, T> Spi<C, Tx, R, T> {
    /// Turn a [`Tx`] [`Spi`] into a [`PanicOnWrite`]
    pub fn into_panic_on_write(self) -> PanicOnWrite<Self> {
        PanicOnWrite(self)
    }
}

/// Wrapper type around a [`Spi`] that allows using
/// [`embedded_hal::spi::SpiBus`] even though it only has TX capability. Will
/// panic if any write-adjacent method is used (ie, `read`, `transfer`, and
/// `transfer_in_place`).
///
/// Also implements `Into<Spi>, `AsRef<Spi>` and `AsMut<Spi>` if you need to use
/// `Spi` methods.
///
/// [`embedded_hal::spi::SpiBus`]: crate::ehal::spi::SpiBus
pub struct PanicOnRead<T: crate::ehal::spi::ErrorType>(T);

impl<C: ValidConfig, R, T> From<PanicOnRead<Spi<C, Tx, R, T>>> for Spi<C, Tx, R, T> {
    fn from(value: PanicOnRead<Spi<C, Tx, R, T>>) -> Self {
        value.0
    }
}

impl<C: ValidConfig, R, T> AsRef<Spi<C, Tx, R, T>> for PanicOnRead<Spi<C, Tx, R, T>> {
    fn as_ref(&self) -> &Spi<C, Tx, R, T> {
        &self.0
    }
}

impl<C: ValidConfig, R, T> AsMut<Spi<C, Tx, R, T>> for PanicOnRead<Spi<C, Tx, R, T>> {
    fn as_mut(&mut self) -> &mut Spi<C, Tx, R, T> {
        &mut self.0
    }
}

impl<C: ValidConfig, R, T> Spi<C, Tx, R, T> {
    /// Turn a [`Rx`] [`Spi`] into a [`PanicOnRead`]
    pub fn into_panic_on_read(self) -> PanicOnRead<Self> {
        PanicOnRead(self)
    }
}

#[hal_cfg("sercom0-d5x")]
impl<P, M, A> Spi<Config<P, M, DynLength>, A>
where
    P: ValidPads,
    M: OpMode,
    Config<P, M, DynLength>: ValidConfig,
    A: Capability,
{
    /// Return the current transaction length
    ///
    /// Read the LENGTH register to determine the current transaction length
    #[inline]
    pub fn get_dyn_length(&self) -> u8 {
        self.config.get_dyn_length()
    }

    /// Set the transaction length
    ///
    /// Write the LENGTH register to set the transaction length. Panics if the
    /// length is zero.
    ///
    /// Changing the transaction `LENGTH` while is enabled is permissible but
    /// dangerous. If you have sent or received *any* bytes at the current
    /// `LENGTH`, you **must** wait for a TXC flag before changing to a new
    /// `LENGTH`.
    #[inline]
    pub fn set_dyn_length(&mut self, length: u8) {
        self.config.set_dyn_length(length);
    }
}

//=============================================================================
// AnySpi
//=============================================================================

/// Type class for all possible [`Spi`] types
///
/// This trait uses the [`AnyKind`] trait pattern to create a [type class] for
/// [`Spi`] types. See the `AnyKind` documentation for more details on the
/// pattern.
///
/// In addition to the normal, `AnyKind` associated types. This trait also
/// copies the [`Sercom`], [`Pads`], [`Capability`], [`OpMode`], [`Size`] and
/// [`Word`] types, to make it easier to apply bounds to these types at the next
/// level of abstraction.
///
/// [`AnyKind`]: crate::typelevel#anykind-trait-pattern
/// [type class]: crate::typelevel#type-classes
pub trait AnySpi: Is<Type = SpecificSpi<Self>> {
    type Sercom: Sercom;
    type Pads: ValidPads;
    type Capability: Capability;
    type OpMode: OpMode;
    type Size: Size;
    type Word: 'static;
    type Config: ValidConfig<Sercom = Self::Sercom>;
}

/// Type alias to recover the specific [`Spi`] type from an implementation of
/// [`AnySpi`]
pub type SpecificSpi<S> = Spi<<S as AnySpi>::Config, <S as AnySpi>::Capability>;

impl<C, A> AsRef<Self> for Spi<C, A>
where
    C: ValidConfig,
    A: Capability,
{
    #[inline]
    fn as_ref(&self) -> &Self {
        self
    }
}

impl<C, A> AsMut<Self> for Spi<C, A>
where
    C: ValidConfig,
    A: Capability,
{
    #[inline]
    fn as_mut(&mut self) -> &mut Self {
        self
    }
}

impl<C, A> Sealed for Spi<C, A>
where
    C: ValidConfig,
    A: Capability,
{
}

impl<C, A> AnySpi for Spi<C, A>
where
    C: ValidConfig,
    A: Capability,
{
    type Sercom = C::Sercom;
    type Pads = C::Pads;
    type Capability = A;
    type OpMode = C::OpMode;
    type Size = C::Size;
    type Word = C::Word;
    type Config = C;
}