atsamd_hal/dmac/channel/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
//! # Abstractions over individual DMA channels
//!
//! # Initializing
//!
//! Individual channels should be initialized through the
//! [`Channel::init`] method. This will return a `Channel<Id, Ready>` ready for
//! use by a [`Transfer`]. Initializing a channel requires setting a priority
//! level, as well as enabling or disabling interrupt requests (only for the
//! specific channel being initialized).
//!
//! # Burst Length and FIFO Threshold (SAMD51/SAME5x only)
//!
//! The transfer burst length can be configured through the
//! [`Channel::burst_length`] method. A burst is an atomic,
//! uninterruptible transfer which length corresponds to a number of beats. See
//! SAMD5x/E5x datasheet section 22.6.1.1 for more information. The FIFO
//! threshold can be configured through the
//! [`Channel::fifo_threshold`] method. This enables the channel
//! to wait for multiple Beats before sending a Burst. See SAMD5x/E5x datasheet
//! section 22.6.2.8 for more information.
//!
//! # Channel status
//!
//! Channels can be in any of three statuses: [`Uninitialized`], [`Ready`], and
//! [`Busy`]. These statuses are checked at compile time to ensure they are
//! properly initialized before launching DMA transfers.
//!
//! # Resetting
//!
//! Calling the [`Channel::reset`] method will reset the channel to its
//! `Uninitialized` state. You will be required to call [`Channel::init`]
//! again before being able to use it with a `Transfer`.
#![allow(unused_braces)]
use core::marker::PhantomData;
use core::sync::atomic;
use atsamd_hal_macros::{hal_cfg, hal_macro_helper};
use super::{
dma_controller::{ChId, PriorityLevel, TriggerAction, TriggerSource},
sram::{self, DmacDescriptor},
transfer::{BufferPair, Transfer},
Beat, Buffer, Error,
};
use crate::typelevel::{Is, Sealed};
use modular_bitfield::prelude::*;
mod reg;
use reg::RegisterBlock;
#[hal_cfg("dmac-d5x")]
use super::dma_controller::{BurstLength, FifoThreshold};
//==============================================================================
// Channel Status
//==============================================================================
pub trait Status: Sealed {
type Uninitialized: Status;
type Ready: Status;
}
/// Uninitialized channel
pub enum Uninitialized {}
impl Sealed for Uninitialized {}
impl Status for Uninitialized {
type Uninitialized = Uninitialized;
type Ready = Ready;
}
/// Initialized and ready to transfer channel
pub enum Ready {}
impl Sealed for Ready {}
impl Status for Ready {
type Uninitialized = Uninitialized;
type Ready = Ready;
}
/// Busy channel
pub enum Busy {}
impl Sealed for Busy {}
impl Status for Busy {
type Uninitialized = Uninitialized;
type Ready = Ready;
}
/// Uninitialized [`Channel`] configured for `async` operation
#[cfg(feature = "async")]
pub enum UninitializedFuture {}
#[cfg(feature = "async")]
impl Sealed for UninitializedFuture {}
#[cfg(feature = "async")]
impl Status for UninitializedFuture {
type Uninitialized = UninitializedFuture;
type Ready = ReadyFuture;
}
/// Initialized and ready to transfer in `async` operation
#[cfg(feature = "async")]
pub enum ReadyFuture {}
#[cfg(feature = "async")]
impl Sealed for ReadyFuture {}
#[cfg(feature = "async")]
impl Status for ReadyFuture {
type Uninitialized = UninitializedFuture;
type Ready = ReadyFuture;
}
pub trait ReadyChannel: Status {}
impl ReadyChannel for Ready {}
#[cfg(feature = "async")]
impl ReadyChannel for ReadyFuture {}
//==============================================================================
// AnyChannel
//==============================================================================
pub trait AnyChannel: Sealed + Is<Type = SpecificChannel<Self>> {
type Status: Status;
type Id: ChId;
}
pub type SpecificChannel<C> = Channel<<C as AnyChannel>::Id, <C as AnyChannel>::Status>;
pub type ChannelStatus<C> = <C as AnyChannel>::Status;
pub type ChannelId<C> = <C as AnyChannel>::Id;
impl<Id, S> Sealed for Channel<Id, S>
where
Id: ChId,
S: Status,
{
}
impl<Id, S> AnyChannel for Channel<Id, S>
where
Id: ChId,
S: Status,
{
type Id = Id;
type Status = S;
}
impl<Id, S> AsRef<Self> for Channel<Id, S>
where
Id: ChId,
S: Status,
{
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
impl<Id, S> AsMut<Self> for Channel<Id, S>
where
Id: ChId,
S: Status,
{
#[inline]
fn as_mut(&mut self) -> &mut Self {
self
}
}
//==============================================================================
// Channel
//==============================================================================
/// DMA channel, capable of executing
/// [`Transfer`]s. Ongoing DMA transfers are automatically stopped when a
/// [`Channel`] is dropped.
pub struct Channel<Id: ChId, S: Status> {
regs: RegisterBlock<Id>,
_status: PhantomData<S>,
}
#[inline]
pub(super) fn new_chan<Id: ChId>(_id: PhantomData<Id>) -> Channel<Id, Uninitialized> {
Channel {
regs: RegisterBlock::new(_id),
_status: PhantomData,
}
}
#[cfg(feature = "async")]
#[inline]
pub(super) fn new_chan_future<Id: ChId>(_id: PhantomData<Id>) -> Channel<Id, UninitializedFuture> {
Channel {
regs: RegisterBlock::new(_id),
_status: PhantomData,
}
}
/// These methods may be used on any DMA channel in any configuration
impl<Id: ChId, S: Status> Channel<Id, S> {
/// Configure the DMA channel so that it is ready to be used by a
/// [`Transfer`](super::transfer::Transfer).
///
/// # Return
///
/// A `Channel` with a `Ready` status
#[inline]
#[hal_macro_helper]
pub fn init(mut self, lvl: PriorityLevel) -> Channel<Id, S::Ready> {
// Software reset the channel for good measure
self._reset_private();
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
// Setup priority level
self.regs.chctrlb.modify(|_, w| w.lvl().variant(lvl));
#[hal_cfg("dmac-d5x")]
self.regs.chprilvl.modify(|_, w| w.prilvl().variant(lvl));
self.change_status()
}
/// Selectively enable interrupts
#[inline]
pub fn enable_interrupts(&mut self, flags: InterruptFlags) {
// SAFETY: This is safe as InterruptFlags is only capable of writing in
// non-reserved bits
self.regs
.chintenset
.write(|w| unsafe { w.bits(flags.into()) });
}
/// Selectively disable interrupts
#[inline]
pub fn disable_interrupts(&mut self, flags: InterruptFlags) {
// SAFETY: This is safe as InterruptFlags is only capable of writing in
// non-reserved bits
self.regs
.chintenclr
.write(|w| unsafe { w.bits(flags.into()) });
}
/// Check the specified `flags`, clear then return any that were set
#[inline]
pub fn check_and_clear_interrupts(&mut self, flags: InterruptFlags) -> InterruptFlags {
let mut cleared = 0;
self.regs.chintflag.modify(|r, w| {
cleared = r.bits() & flags.into_bytes()[0];
unsafe { w.bits(cleared) }
});
InterruptFlags::from_bytes([cleared])
}
#[inline]
pub(super) fn change_status<N: Status>(self) -> Channel<Id, N> {
Channel {
regs: self.regs,
_status: PhantomData,
}
}
#[inline]
fn _reset_private(&mut self) {
// Reset the channel to its startup state and wait for reset to complete
self.regs.chctrla.modify(|_, w| w.swrst().set_bit());
while self.regs.chctrla.read().swrst().bit_is_set() {}
}
#[inline]
fn _trigger_private(&mut self) {
self.regs.swtrigctrl.set_bit();
}
/// Enable the transfer, and emit a compiler fence.
#[inline]
fn _enable_private(&mut self) {
// Prevent the compiler from re-ordering read/write
// operations beyond this fence.
// (see https://docs.rust-embedded.org/embedonomicon/dma.html#compiler-misoptimizations)
atomic::fence(atomic::Ordering::Release); // ▲
self.regs.chctrla.modify(|_, w| w.enable().set_bit());
}
/// Stop transfer on channel whether or not the transfer has completed
#[inline]
pub(crate) fn stop(&mut self) {
self.regs.chctrla.modify(|_, w| w.enable().clear_bit());
// Wait for the burst to finish
while !self.xfer_complete() {
core::hint::spin_loop();
}
// Prevent the compiler from re-ordering read/write
// operations beyond this fence.
// (see https://docs.rust-embedded.org/embedonomicon/dma.html#compiler-misoptimizations)
atomic::fence(atomic::Ordering::Acquire); // ▼
}
/// Returns whether or not the transfer is complete.
#[inline]
pub(crate) fn xfer_complete(&mut self) -> bool {
self.regs.chctrla.read().enable().bit_is_clear()
}
/// Returns the transfer's success status.
#[allow(dead_code)]
#[inline]
pub(crate) fn xfer_success(&mut self) -> super::Result<()> {
let success = self.regs.chintflag.read().terr().bit_is_clear();
success.then_some(()).ok_or(Error::TransferError)
}
/// Return a mutable reference to the DMAC descriptor that belongs to this
/// channel. In the case of linked transfers, this will be the first
/// descriptor in the chain.
#[inline]
fn descriptor_mut(&mut self) -> &mut DmacDescriptor {
// SAFETY this is only safe as long as we read/write to the descriptor
// belonging to OUR channel. We assume this is the case, as there can only ever
// exist one (safely created) instance of Self, and we're taking an exclusive
// reference to Self.
unsafe {
let id = ChannelId::<Self>::USIZE;
&mut *sram::get_descriptor(id)
}
}
/// Fill the first descriptor of a channel into the SRAM descriptor section.
///
/// # Safety
///
/// This method may only be called on a channel which is not actively being
/// used for transferring data.
#[inline]
pub(super) unsafe fn fill_descriptor<Src: Buffer, Dst: Buffer<Beat = Src::Beat>>(
&mut self,
source: &mut Src,
destination: &mut Dst,
circular: bool,
) {
let descriptor = self.descriptor_mut();
// Enable support for circular transfers. If circular_xfer is true,
// we set the address of the "next" block descriptor to actually
// be the same address as the current block descriptor.
// Otherwise we set it to NULL, which terminates the transaction.
let descaddr = if circular {
// SAFETY This is safe as we are only reading the descriptor's address,
// and not actually writing any data to it. We also assume the descriptor
// will never be moved.
descriptor as *mut _
} else {
core::ptr::null_mut()
};
write_descriptor(descriptor, source, destination, descaddr);
}
/// Add a linked descriptor after the first descriptor in the transfer.
///
/// # Safety
///
/// * This method may only be called on a channel which is not actively
/// being used for transferring data.
///
/// * `next` must point to a valid [`DmacDescriptor`], with all the safety
/// considerations that entails: the source and destination buffers must
/// be valid, have compatible lengths, remain in scope for the entirety of
/// the transfer, etc.
///
/// * The pointer in the `descaddr` field of `next`, along with the
/// descriptor it points to, etc, must point to a valid [`DmacDescriptor`]
/// memory location, or be null. They must not be circular (ie, points to
/// itself). Any linked transfer must strictly be a read transaction
/// (destination pointer is a byte buffer, source pointer is the SERCOM
/// DATA register).
pub(super) unsafe fn link_next(&mut self, next: *mut DmacDescriptor) {
self.descriptor_mut().descaddr = next;
}
}
impl<Id, R> Channel<Id, R>
where
Id: ChId,
R: ReadyChannel,
{
/// Issue a software reset to the channel. This will return the channel to
/// its startup state
#[inline]
pub fn reset(mut self) -> Channel<Id, R::Uninitialized> {
self._reset_private();
self.change_status()
}
/// Set the FIFO threshold length. The channel will wait until it has
/// received the selected number of Beats before triggering the Burst
/// transfer, reducing the DMA transfer latency.
#[hal_cfg("dmac-d5x")]
#[inline]
pub fn fifo_threshold(&mut self, threshold: FifoThreshold) {
self.regs
.chctrla
.modify(|_, w| w.threshold().variant(threshold));
}
/// Set burst length for the channel, in number of beats. A burst transfer
/// is an atomic, uninterruptible operation.
#[hal_cfg("dmac-d5x")]
#[inline]
pub fn burst_length(&mut self, burst_length: BurstLength) {
self.regs
.chctrla
.modify(|_, w| w.burstlen().variant(burst_length));
}
/// Start the transfer.
///
/// # Safety
///
/// This function is unsafe because it starts the transfer without changing
/// the channel status to [`Busy`]. A [`Ready`] channel which is actively
/// transferring should NEVER be leaked.
#[inline]
#[hal_macro_helper]
pub(super) unsafe fn _start_private(
&mut self,
trig_src: TriggerSource,
trig_act: TriggerAction,
) {
// Configure the trigger source and trigger action
self.configure_trigger(trig_src, trig_act);
self._enable_private();
// If trigger source is DISABLE, manually trigger transfer
if trig_src == TriggerSource::Disable {
self._trigger_private();
}
}
#[inline]
#[hal_macro_helper]
pub(super) fn configure_trigger(&mut self, trig_src: TriggerSource, trig_act: TriggerAction) {
// Configure the trigger source and trigger action
#[hal_cfg(any("dmac-d11", "dmac-d21"))]
self.regs.chctrlb.modify(|_, w| {
w.trigsrc().variant(trig_src);
w.trigact().variant(trig_act)
});
#[hal_cfg("dmac-d5x")]
self.regs.chctrla.modify(|_, w| {
w.trigsrc().variant(trig_src);
w.trigact().variant(trig_act)
});
}
}
impl<Id: ChId> Channel<Id, Ready> {
/// Start transfer on channel using the specified trigger source.
///
/// # Return
///
/// A `Channel` with a `Busy` status.
#[inline]
pub(crate) fn start(
mut self,
trig_src: TriggerSource,
trig_act: TriggerAction,
) -> Channel<Id, Busy> {
unsafe {
self._start_private(trig_src, trig_act);
}
self.change_status()
}
/// Begin a [`Transfer`], without changing the channel's type to [`Busy`].
///
/// This method provides an additional safety guarantee over
/// [`Self::transfer_unchecked`]; it checks that the buffer lengths are
/// valid before attempting to start the transfer.
///
/// Also provides support for linked transfers via an optional `&mut
/// DmacDescriptor`.
///
/// This function guarantees that it will never return [`Err`] if the
/// transfer has been started.
///
/// # Safety
///
/// * You must ensure that the transfer is completed or stopped before
/// returning the [`Channel`]. Doing otherwise breaks type safety, because
/// a [`Ready`] channel would still be in the middle of a transfer.
/// * If the provided `linked_descriptor` is `Some` it must not be dropped
/// until the transfer is completed or stopped.
/// * Additionnally, this function doesn't take `'static` buffers. Again,
/// you must guarantee that the returned transfer has completed or has
/// been stopped before giving up control of the underlying [`Channel`].
#[inline]
#[allow(dead_code)]
pub(crate) unsafe fn transfer<S, D>(
&mut self,
source: &mut S,
dest: &mut D,
trig_src: TriggerSource,
trig_act: TriggerAction,
linked_descriptor: Option<&mut DmacDescriptor>,
) -> Result<(), Error>
where
S: Buffer,
D: Buffer<Beat = S::Beat>,
{
Transfer::<Self, BufferPair<S, D>>::check_buffer_pair(source, dest)?;
self.transfer_unchecked(source, dest, trig_src, trig_act, linked_descriptor);
Ok(())
}
/// Begin a transfer, without changing the channel's type to [`Busy`].
///
/// Also provides support for linked transfers via an optional `&mut
/// DmacDescriptor`.
///
/// # Safety
///
/// * This method does not check that the two provided buffers have
/// compatible lengths. You must guarantee that:
/// - Either `source` or `dest` has a buffer length of 1, or
/// - Both buffers have the same length.
/// * You must ensure that the transfer is completed or stopped before
/// returning the [`Channel`]. Doing otherwise breaks type safety, because
/// a [`Ready`] channel would still be in the middle of a transfer.
/// * If the provided `linked_descriptor` is `Some` it must not be dropped
/// until the transfer is completed or stopped.
/// * Additionnally, this function doesn't take `'static` buffers. Again,
/// you must guarantee that the returned transfer has completed or has
/// been stopped before giving up control of the underlying [`Channel`].
#[inline]
pub(crate) unsafe fn transfer_unchecked<S, D>(
&mut self,
source: &mut S,
dest: &mut D,
trig_src: TriggerSource,
trig_act: TriggerAction,
linked_descriptor: Option<&mut DmacDescriptor>,
) where
S: Buffer,
D: Buffer<Beat = S::Beat>,
{
self.fill_descriptor(source, dest, false);
if let Some(next) = linked_descriptor {
self.link_next(next as *mut _);
}
self.configure_trigger(trig_src, trig_act);
self._enable_private();
if trig_src == TriggerSource::Disable {
self._trigger_private();
}
}
}
/// These methods may only be used on a `Busy` DMA channel
impl<Id: ChId> Channel<Id, Busy> {
/// Issue a software trigger to the channel
#[inline]
pub(crate) fn software_trigger(&mut self) {
self._trigger_private();
}
/// Stop transfer on channel whether or not the transfer has completed, and
/// return the resources it holds.
///
/// # Return
///
/// A `Channel` with a `Ready` status, ready to be reused by a new
/// [`Transfer`](super::transfer::Transfer)
#[inline]
pub(crate) fn free(mut self) -> Channel<Id, Ready> {
self.stop();
self.change_status()
}
/// Restart transfer using previously-configured trigger source and action
#[inline]
pub(crate) fn restart(&mut self) {
self._enable_private();
}
}
impl<Id: ChId> From<Channel<Id, Ready>> for Channel<Id, Uninitialized> {
fn from(mut item: Channel<Id, Ready>) -> Self {
item._reset_private();
item.change_status()
}
}
#[cfg(feature = "async")]
impl<Id: ChId> Channel<Id, ReadyFuture> {
/// Begin DMA transfer using `async` operation.
///
/// If [`TriggerSource::Disable`] is used, a software
/// trigger will be issued to the DMA channel to launch the transfer. It
/// is therefore not necessary, in most cases, to manually issue a
/// software trigger to the channel.
///
/// # Safety
///
/// In `async` mode, a transfer does NOT require `'static` source and
/// destination buffers. This, in theory, makes
/// [`transfer_future`](Channel::transfer_future) an `unsafe` function,
/// although it is marked as safe for better ergonomics.
///
/// This means that, as an user, you **must** ensure that the [`Future`]
/// returned by this function may never be forgotten through [`forget`] or
/// by wrapping it with a [`ManuallyDrop`].
///
/// The returned future implements [`Drop`] and will automatically stop any
/// ongoing transfers to guarantee that the memory occupied by the
/// now-dropped buffers may not be corrupted by running transfers. This
/// also means that should you [`forget`] this [`Future`] after its
/// first [`poll`] call, the transfer will keep running, ruining the
/// now-reclaimed memory, as well as the rest of your day.
///
/// * `await`ing is fine: the [`Future`] will run to completion.
/// * Dropping an incomplete transfer is also fine. Dropping can happen, for
/// example, if the transfer doesn't complete before a timeout expires.
///
/// [`forget`]: core::mem::forget
/// [`ManuallyDrop`]: core::mem::ManuallyDrop
/// [`Future`]: core::future::Future
/// [`poll`]: core::future::Future::poll
#[inline]
pub async fn transfer_future<S, D>(
&mut self,
mut source: S,
mut dest: D,
trig_src: TriggerSource,
trig_act: TriggerAction,
) -> Result<(), super::Error>
where
S: super::Buffer,
D: super::Buffer<Beat = S::Beat>,
{
unsafe {
self.transfer_future_linked(&mut source, &mut dest, trig_src, trig_act, None)
.await
}
}
/// Begin an async transfer, without changing the channel's type to
/// [`Busy`].
///
/// Also provides support for linked transfers via an optional `&mut
/// DmacDescriptor`.
///
/// # Safety
///
/// * This method does not check that the two provided buffers have
/// compatible lengths. You must guarantee that:
/// - Either `source` or `dest` has a buffer length of 1, or
/// - Both buffers have the same length.
/// * You must ensure that the transfer is completed or stopped before
/// returning the [`Channel`]. Doing otherwise breaks type safety, because
/// a [`ReadyFuture`] channel would still be in the middle of a transfer.
/// * If the provided `linked_descriptor` is `Some` it must not be dropped
/// until the transfer is completed or stopped.
/// * Additionnally, this function doesn't take `'static` buffers. Again,
/// you must guarantee that the returned transfer has completed or has
/// been stopped before giving up control of the underlying [`Channel`].
pub(crate) async unsafe fn transfer_future_linked<S, D>(
&mut self,
source: &mut S,
dest: &mut D,
trig_src: TriggerSource,
trig_act: TriggerAction,
linked_descriptor: Option<&mut DmacDescriptor>,
) -> Result<(), super::Error>
where
S: super::Buffer,
D: super::Buffer<Beat = S::Beat>,
{
super::Transfer::<Self, super::transfer::BufferPair<S, D>>::check_buffer_pair(
source, dest,
)?;
unsafe {
self.fill_descriptor(source, dest, false);
if let Some(next) = linked_descriptor {
self.link_next(next as *mut _);
}
}
self.disable_interrupts(
InterruptFlags::new()
.with_susp(true)
.with_tcmpl(true)
.with_terr(true),
);
self.configure_trigger(trig_src, trig_act);
transfer_future::TransferFuture::new(self, trig_src).await;
// No need to defensively disable channel here; it's automatically stopped when
// TransferFuture is dropped. Even though `stop()` is implicitly called
// through TransferFuture::drop, it *absolutely* must be called before
// this function is returned, because it emits the compiler fence which ensures
// memory operations aren't reordered beyond the DMA transfer's bounds.
// TODO currently this will always return Ok(()) since we unconditionally clear
// ERROR
self.xfer_success()
}
}
#[cfg(feature = "async")]
mod transfer_future {
use super::*;
/// [`Future`](core::future::Future) which starts, then waits on a DMA
/// transfer.
///
/// This implementation is a standalone struct instead of using
/// [`poll_fn`](core::future::poll_fn), because we want to implement
/// [`Drop`] for the future returned by the
/// [`transfer_future`](super::Channel::transfer_future) method. This way we
/// can stop transfers when they are dropped, thus avoiding undefined
/// behaviour.
pub(super) struct TransferFuture<'a, Id: ChId> {
triggered: bool,
trig_src: TriggerSource,
chan: &'a mut Channel<Id, ReadyFuture>,
}
impl<'a, Id: ChId> TransferFuture<'a, Id> {
pub(super) fn new(chan: &'a mut Channel<Id, ReadyFuture>, trig_src: TriggerSource) -> Self {
Self {
triggered: false,
trig_src,
chan,
}
}
}
impl<Id: ChId> Drop for TransferFuture<'_, Id> {
fn drop(&mut self) {
self.chan.stop();
}
}
impl<Id: ChId> core::future::Future for TransferFuture<'_, Id> {
type Output = ();
fn poll(
mut self: core::pin::Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
use crate::dmac::waker::WAKERS;
use core::task::Poll;
self.chan._enable_private();
if !self.triggered && self.trig_src == TriggerSource::Disable {
self.triggered = true;
self.chan._trigger_private();
}
let flags_to_check = InterruptFlags::new().with_tcmpl(true).with_terr(true);
if self.chan.check_and_clear_interrupts(flags_to_check).tcmpl() {
return Poll::Ready(());
}
WAKERS[Id::USIZE].register(cx.waker());
self.chan.enable_interrupts(flags_to_check);
if self.chan.check_and_clear_interrupts(flags_to_check).tcmpl() {
self.chan.disable_interrupts(flags_to_check);
return Poll::Ready(());
}
Poll::Pending
}
}
}
/// Interrupt sources available to a DMA channel
#[bitfield]
#[repr(u8)]
#[derive(Clone, Copy)]
pub struct InterruptFlags {
/// Transfer error
pub terr: bool,
/// Transfer complete
pub tcmpl: bool,
/// Transfer suspended
pub susp: bool,
#[skip]
_reserved: B5,
}
impl Default for InterruptFlags {
fn default() -> Self {
Self::new()
}
}
/// Generate a [`DmacDescriptor`], and write it to the provided descriptor
/// reference.
///
/// `next` is the address of the next descriptor (for linked transfers). If
/// it is set to `0`, the transfer will terminate after this descriptor. For
/// circular transfers, set `next` to the descriptor's own address.
///
/// # Safety
///
/// * This method may only be called on a channel which is not actively being
/// used for transferring data.
///
/// * `next` must point to a valid [`DmacDescriptor`], with all the safety
/// considerations that entails: the source and destination buffers must be
/// valid, have compatible lengths, remain in scope for the entirety of the
/// transfer, etc.
///
/// * The pointer in the `descaddr` field of `next`, along with the descriptor
/// it points to, etc, must point to a valid [`DmacDescriptor`] memory
/// location, or be null. They must not be circular (ie, points to itself).
/// Any linked transfer must strictly be a read transaction (destination
/// pointer is a byte buffer, source pointer is the SERCOM DATA register).
#[inline]
pub(crate) unsafe fn write_descriptor<Src: Buffer, Dst: Buffer<Beat = Src::Beat>>(
descriptor: &mut DmacDescriptor,
source: &mut Src,
destination: &mut Dst,
next: *mut DmacDescriptor,
) {
let src_ptr = source.dma_ptr();
let src_inc = source.incrementing();
let src_len = source.buffer_len();
let dst_ptr = destination.dma_ptr();
let dst_inc = destination.incrementing();
let dst_len = destination.buffer_len();
let length = core::cmp::max(src_len, dst_len);
// Channel::xfer_complete() tests the channel enable bit, which indicates
// that a transfer has completed iff the blockact field in btctrl is not
// set to SUSPEND. We implicitly leave blockact set to NOACT here; if
// that changes Channel::xfer_complete() may need to be modified.
let btctrl = sram::BlockTransferControl::new()
.with_srcinc(src_inc)
.with_dstinc(dst_inc)
.with_beatsize(Src::Beat::BEATSIZE)
.with_valid(true);
*descriptor = DmacDescriptor {
// Next descriptor address: 0x0 terminates the transaction (no linked list),
// any other address points to the next block descriptor
descaddr: next,
// Source address: address of the last beat transfer source in block
srcaddr: src_ptr as *mut _,
// Destination address: address of the last beat transfer destination in block
dstaddr: dst_ptr as *mut _,
// Block transfer count: number of beats in block transfer
btcnt: length as u16,
// Block transfer control: Datasheet section 19.8.2.1 p.329
btctrl,
};
}