atsamd_hal/sercom/i2c/
impl_ehal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
//! [`embedded-hal`] trait implementations for [`I2c`]s

use super::{config::AnyConfig, flags::Error, I2c};
use crate::ehal::i2c::{self, ErrorKind, ErrorType, NoAcknowledgeSource, Operation};

impl i2c::Error for Error {
    #[allow(unreachable_patterns)]
    fn kind(&self) -> ErrorKind {
        match self {
            Error::BusError => ErrorKind::Bus,
            Error::ArbitrationLost => ErrorKind::ArbitrationLoss,
            Error::LengthError => ErrorKind::Other,
            Error::Nack => ErrorKind::NoAcknowledge(NoAcknowledgeSource::Unknown),
            Error::Timeout => ErrorKind::Other,
            // Pattern reachable when "dma" feature is enabled
            _ => ErrorKind::Other,
        }
    }
}

impl<C: AnyConfig, D> ErrorType for I2c<C, D> {
    type Error = Error;
}

impl<C: AnyConfig, D> I2c<C, D> {
    pub(super) fn transaction_byte_by_byte(
        &mut self,
        address: u8,
        operations: &mut [Operation<'_>],
    ) -> Result<(), Error> {
        let mut op_groups = chunk_operations(operations).peekable();

        while let Some(group) = op_groups.next() {
            let mut group = group.iter_mut();
            // Unwrapping is OK here because chunk_operations will never give us a 0-length
            // chunk.
            let op = group.next().unwrap();

            // First operation in the group - send a START with the address, and the first
            // operation.
            match op {
                Operation::Read(buf) => self.do_read(address, buf)?,
                Operation::Write(buf) => self.do_write(address, buf)?,
            }

            // For all subsequent operations, just send/read more bytes without any more
            // ceremony.
            for op in group {
                match op {
                    Operation::Read(buf) => self.continue_read(buf)?,
                    Operation::Write(buf) => self.continue_write(buf)?,
                }
            }

            let regs = &mut self.config.as_mut().registers;
            if op_groups.peek().is_some() {
                // If we still have more groups to go, send a repeated start
                regs.cmd_repeated_start();
            } else {
                // Otherwise, send a stop
                regs.cmd_stop();
            }
        }

        Ok(())
    }
}

impl<C: AnyConfig> i2c::I2c for I2c<C> {
    fn transaction(
        &mut self,
        address: u8,
        operations: &mut [Operation<'_>],
    ) -> Result<(), Self::Error> {
        self.transaction_byte_by_byte(address, operations)?;
        Ok(())
    }

    fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
        self.do_write(address, bytes)?;
        self.cmd_stop();
        Ok(())
    }

    fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
        self.do_read(address, buffer)?;
        self.cmd_stop();
        Ok(())
    }

    fn write_read(
        &mut self,
        address: u8,
        bytes: &[u8],
        buffer: &mut [u8],
    ) -> Result<(), Self::Error> {
        self.do_write_read(address, bytes, buffer)?;
        self.cmd_stop();
        Ok(())
    }
}

#[cfg(feature = "dma")]
mod dma {
    use super::*;
    use crate::dmac::ReadyChannel;
    use crate::dmac::{channel, sram::DmacDescriptor, AnyChannel, Ready};
    use crate::sercom::dma::{read_dma_linked, write_dma_linked, SercomPtr, SharedSliceBuffer};
    use crate::sercom::{self, Sercom};

    impl<C, D, S, R> I2c<C, D>
    where
        C: AnyConfig<Sercom = S>,
        S: Sercom,
        D: AnyChannel<Status = R>,
        R: ReadyChannel,
    {
        pub(in super::super) fn sercom_ptr(&self) -> SercomPtr<sercom::i2c::Word> {
            SercomPtr(self.data_ptr())
        }

        /// Walk up the transfer linked list, and calculate the number of beats
        /// the entire block list contains.
        ///
        /// # Safety
        ///
        /// If `next` is [`Some`], the pointer in its `descaddr` field, along
        /// with the descriptor it points to, etc, must point to a valid
        /// [`DmacDescriptor`] memory location, or be null. They must not be
        /// circular (ie, points to itself).
        #[inline]
        unsafe fn linked_transfer_length(next: &Option<&mut DmacDescriptor>) -> usize {
            let mut cnt = 0;

            if let Some(next) = next {
                cnt += next.beat_count() as usize;
                let mut next_ptr = next.next_descriptor();

                while !next_ptr.is_null() {
                    let next = *next_ptr;
                    cnt += next.beat_count() as usize;
                    next_ptr = next.next_descriptor();
                }
            }

            cnt
        }

        /// Prepare an I2C read transaction, with the option to add in linked
        /// transfers after this first transaction.
        ///
        /// # Safety
        ///
        /// If `next` is [`Some`], the pointer in its `descaddr` field, along
        /// with the descriptor it points to, etc, must point to a valid
        /// [`DmacDescriptor`] memory location, or be null. They must not be
        /// circular (ie, points to itself). Any linked transfer must
        /// strictly be a read transaction (destination pointer is a byte
        /// buffer, source pointer is the SERCOM DATA register).
        #[inline]
        pub(in super::super) unsafe fn prepare_read_linked(
            &mut self,
            address: u8,
            dest: &mut [u8],
            next: &Option<&mut DmacDescriptor>,
        ) -> Result<(), Error> {
            if dest.is_empty() {
                return Ok(());
            }

            self.check_bus_status()?;

            // Calculate the total number of bytes for this transaction across all linked
            // transfers, including the first transfer.
            let transfer_len = dest.len() + Self::linked_transfer_length(next);

            assert!(
                transfer_len <= 255,
                "I2C read transfers of more than 255 bytes are unsupported."
            );

            self.start_dma_read(address, transfer_len as u8);
            Ok(())
        }

        /// Prepare an I2C write transaction, with the option to add in linked
        /// transfers after this first transaction.
        ///
        /// # Safety
        ///
        /// If `next` is [`Some`], the pointer in its `descaddr` field, along
        /// with the descriptor it points to, etc, must point to a valid
        /// [`DmacDescriptor`] memory location, or be null. They must not be
        /// circular (ie, points to itself). Any linked transfer must
        /// strictly be a write transaction (source pointer is a byte buffer,
        /// destination pointer is the SERCOM DATA register).
        pub(in super::super) unsafe fn prepare_write_linked(
            &mut self,
            address: u8,
            source: &[u8],
            next: &Option<&mut DmacDescriptor>,
        ) -> Result<(), Error> {
            self.check_bus_status()?;

            if source.is_empty() {
                return Ok(());
            }

            // Calculate the total number of bytes for this transaction across all linked
            // transfers, including the first transfer.
            let transfer_len = source.len() + Self::linked_transfer_length(next);

            assert!(
                transfer_len <= 255,
                "I2C write transfers of more than 255 bytes are unsupported."
            );

            self.start_dma_write(address, transfer_len as u8);
            Ok(())
        }
    }

    impl<C, D, S> I2c<C, D>
    where
        C: AnyConfig<Sercom = S>,
        S: Sercom,
        D: AnyChannel<Status = Ready>,
    {
        /// Make an I2C read transaction, with the option to add in linked
        /// transfers after this first transaction.
        ///
        /// # Safety
        ///
        /// If `next` is [`Some`], the pointer in its `descaddr` field, along
        /// with the descriptor it points to, etc, must point to a valid
        /// [`DmacDescriptor`] memory location, or be null. They must not be
        /// circular (ie, points to itself). Any linked transfer must
        /// strictly be a read transaction (destination pointer is a byte
        /// buffer, source pointer is the SERCOM DATA register).
        #[inline]
        unsafe fn read_linked(
            &mut self,
            address: u8,
            mut dest: &mut [u8],
            next: Option<&mut DmacDescriptor>,
        ) -> Result<(), Error> {
            self.prepare_read_linked(address, dest, &next)?;
            let sercom_ptr = self.sercom_ptr();
            let channel = self._dma_channel.as_mut();

            // SAFETY: We must make sure that any DMA transfer is complete or stopped before
            // returning.
            read_dma_linked::<_, _, S>(channel, sercom_ptr, &mut dest, next);

            while !channel.xfer_complete() {
                core::hint::spin_loop();
            }

            // Defensively disable channel
            channel.stop();

            self.read_status().check_bus_error()?;
            self._dma_channel.as_mut().xfer_success()?;
            Ok(())
        }

        /// Make an I2C write transaction, with the option to add in linked
        /// transfers after this first transaction.
        ///
        /// # Safety
        ///
        /// If `next` is [`Some`], the pointer in its `descaddr` field, along
        /// with the descriptor it points to, etc, must point to a valid
        /// [`DmacDescriptor`] memory location, or be null. They must not be
        /// circular (ie, points to itself). Any linked transfer must
        /// strictly be a write transaction (source pointer is a byte buffer,
        /// destination pointer is the SERCOM DATA register).
        #[inline]
        unsafe fn write_linked(
            &mut self,
            address: u8,
            source: &[u8],
            next: Option<&mut DmacDescriptor>,
        ) -> Result<(), Error> {
            self.prepare_write_linked(address, source, &next)?;

            let sercom_ptr = self.sercom_ptr();
            let mut bytes = SharedSliceBuffer::from_slice(source);
            let channel = self._dma_channel.as_mut();

            // SAFETY: We must make sure that any DMA transfer is complete or stopped before
            // returning.
            write_dma_linked::<_, _, S>(channel, sercom_ptr, &mut bytes, next);

            while !channel.xfer_complete() {
                core::hint::spin_loop();
            }

            // Defensively disable channel
            channel.stop();

            while !self.read_status().is_idle() {
                core::hint::spin_loop();
            }

            self.read_status().check_bus_error()?;
            self._dma_channel.as_mut().xfer_success()?;
            Ok(())
        }
    }

    impl<C, D, S> i2c::I2c for I2c<C, D>
    where
        C: AnyConfig<Sercom = S>,
        S: Sercom,
        D: AnyChannel<Status = Ready>,
    {
        #[inline]
        fn transaction(
            &mut self,
            address: u8,
            operations: &mut [i2c::Operation<'_>],
        ) -> Result<(), Self::Error> {
            use i2c::Operation::{Read, Write};

            const NUM_LINKED_TRANSFERS: usize = 16;

            if operations.is_empty() {
                return Ok(());
            }

            let mut sercom_ptr = self.sercom_ptr();

            // Reserve some space for linked DMA transfer descriptors.
            // Uses 256 bytes of memory.
            //
            // In practice this means that we can only support 17 continuously
            // linked operations of the same type (R/W) before having to issue
            // an I2C STOP. DMA-enabled I2C transfers automatically issue stop
            // commands, and there is no way to turn off that behaviour.
            //
            //  In the event that we have more than 17 contiguous operations of
            //  the same type, we must revert to the byte-by-byte I2C implementations.
            let mut descriptors = heapless::Vec::<DmacDescriptor, NUM_LINKED_TRANSFERS>::new();

            let op_groups = chunk_operations(operations);

            for group in op_groups {
                descriptors.clear();

                // Default to byte-by-byte impl if we have more than 17 continuous operations,
                // as we would overflow our DMA linked transfer reeserved space otherwise.
                if group.len() > NUM_LINKED_TRANSFERS {
                    self.transaction_byte_by_byte(address, group)?;
                } else {
                    // --- Setup all linked descriptors ---

                    // Skip the first operation; we will deal with it when creating the I2C transfer
                    // (read_dma_linked/write_dma_linked). Every other operation is a linked
                    // transfer, and we must treat them accordingly.
                    for op in group.iter_mut().skip(1) {
                        match op {
                            Read(ref mut buffer) => {
                                if buffer.is_empty() {
                                    continue;
                                }
                                // Add a new linked descriptor to the stack
                                descriptors
                                    .push(DmacDescriptor::default())
                                    .unwrap_or_else(|_| panic!("BUG: DMAC descriptors overflow"));
                                let last_descriptor = descriptors.last_mut().unwrap();
                                let next_ptr =
                                    (last_descriptor as *mut DmacDescriptor).wrapping_add(1);

                                unsafe {
                                    channel::write_descriptor(
                                        last_descriptor,
                                        &mut sercom_ptr,
                                        buffer,
                                        // Always link the next descriptor. We then set the last
                                        // transfer's link pointer to null lower down in the code.
                                        next_ptr,
                                    );
                                }
                            }

                            Write(bytes) => {
                                if bytes.is_empty() {
                                    continue;
                                }
                                // Add a new linked descriptor to the stack
                                descriptors
                                    .push(DmacDescriptor::default())
                                    .unwrap_or_else(|_| panic!("BUG: DMAC descriptors overflow"));
                                let last_descriptor = descriptors.last_mut().unwrap();
                                let next_ptr =
                                    (last_descriptor as *mut DmacDescriptor).wrapping_add(1);

                                let mut bytes = SharedSliceBuffer::from_slice(bytes);
                                unsafe {
                                    channel::write_descriptor(
                                        last_descriptor,
                                        &mut bytes,
                                        &mut sercom_ptr,
                                        // Always link the next descriptor. We then set the last
                                        // transfer's link pointer to null lower down in the code.
                                        next_ptr,
                                    );
                                }
                            }
                        }
                    }

                    // Set the last descriptor to a null pointer to stop the transfer, and avoid
                    // buffer overflow UB.
                    if let Some(d) = descriptors.last_mut() {
                        d.set_next_descriptor(core::ptr::null_mut());
                    }

                    // Now setup and perform the actual transfer
                    match group.first_mut().unwrap() {
                        Read(ref mut buffer) => unsafe {
                            self.read_linked(address, buffer, descriptors.first_mut())?;
                        },
                        Write(bytes) => unsafe {
                            self.write_linked(address, bytes, descriptors.first_mut())?;
                        },
                    }
                }
            }

            Ok(())
        }

        #[inline]
        fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
            unsafe { self.write_linked(address, bytes, None) }
        }

        #[inline]
        fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
            unsafe { self.read_linked(address, buffer, None) }
        }

        #[inline]
        fn write_read(
            &mut self,
            address: u8,
            bytes: &[u8],
            buffer: &mut [u8],
        ) -> Result<(), Self::Error> {
            self.write(address, bytes)?;
            self.read(address, buffer)?;
            Ok(())
        }
    }
}

impl<C: AnyConfig> crate::ehal_02::blocking::i2c::Write for I2c<C> {
    type Error = Error;

    fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Self::Error> {
        self.do_write(addr, bytes)?;
        self.cmd_stop();
        Ok(())
    }
}

impl<C: AnyConfig> crate::ehal_02::blocking::i2c::Read for I2c<C> {
    type Error = Error;

    fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
        self.do_read(addr, buffer)?;
        self.cmd_stop();
        Ok(())
    }
}

impl<C: AnyConfig> crate::ehal_02::blocking::i2c::WriteRead for I2c<C> {
    type Error = Error;

    fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
        self.do_write_read(addr, bytes, buffer)?;
        self.cmd_stop();
        Ok(())
    }
}

/// Arrange all operations in contiguous chunks of the same R/W type
pub(super) fn chunk_operations<'a, 'op>(
    operations: &'a mut [Operation<'op>],
) -> impl Iterator<Item = &'a mut [Operation<'op>]> {
    use i2c::Operation::{Read, Write};

    operations.chunk_by_mut(|this, next| {
        matches!((this, next), (Write(_), Write(_)) | (Read(_), Read(_)))
    })
}