1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
//! Provides macros to support bitfield structs allowing for modular use of bit-enums.
//!
//! The mainly provided macros are `#[bitfield]` for structs and
//! `#[derive(BitfieldSpecifier)]` for enums that shall be usable
//! within bitfield structs.
//!
//! There are preset bitfield specifiers such as `B1`, `B2`,..,`B64`
//! that allow for easy bitfield usage in structs very similar to how
//! they work in C or C++.
//!
//! - Performance of the macro generated code is as fast as its hand-written
//! alternative.
//! - Compile-time checks allow for safe usage of bitfield structs and enums.
//!
//!
//! ### Usage
//!
//! Annotate a Rust struct with the `#[bitfield]` attribute in order to convert it into a bitfield.
//! The `B1`, `B2`, ... `B128` prelude types can be used as primitives to declare the number of bits per field.
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[bitfield]
//! pub struct PackedData {
//! header: B4,
//! body: B9,
//! is_alive: B1,
//! status: B2,
//! }
//! ```
//!
//! This produces a `new` constructor as well as a variety of getters and setters that
//! allows to interact with the bitfield in a safe fashion:
//!
//! #### Example: Constructors
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! # #[bitfield]
//! # pub struct PackedData {
//! # header: B4,
//! # body: B9,
//! # is_alive: B1,
//! # status: B2,
//! # }
//! let data = PackedData::new()
//! .with_header(1)
//! .with_body(2)
//! .with_is_alive(0)
//! .with_status(3);
//! assert_eq!(data.header(), 1);
//! assert_eq!(data.body(), 2);
//! assert_eq!(data.is_alive(), 0);
//! assert_eq!(data.status(), 3);
//! ```
//!
//! #### Example: Primitive Types
//!
//! Any type that implements the `Specifier` trait can be used as a bitfield field.
//! Besides the already mentioned `B1`, .. `B128` also the `bool`, `u8, `u16, `u32,
//! `u64` or `u128` primitive types can be used from prelude.
//!
//! We can use this knowledge to encode our `is_alive` as `bool` type instead of `B1`:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[bitfield]
//! pub struct PackedData {
//! header: B4,
//! body: B9,
//! is_alive: bool,
//! status: B2,
//! }
//!
//! let mut data = PackedData::new()
//! .with_is_alive(true);
//! assert!(data.is_alive());
//! data.set_is_alive(false);
//! assert!(!data.is_alive());
//! ```
//!
//! #### Example: Enum Specifiers
//!
//! It is possible to derive the `Specifier` trait for `enum` types very easily to make
//! them also usable as a field within a bitfield type:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[derive(BitfieldSpecifier)]
//! pub enum Status {
//! Red, Green, Yellow, None,
//! }
//!
//! #[bitfield]
//! pub struct PackedData {
//! header: B4,
//! body: B9,
//! is_alive: bool,
//! status: Status,
//! }
//! ```
//!
//! #### Example: Extra Safety Guard
//!
//! In order to make sure that our `Status` enum still requires exatly 2 bit we can add
//! `#[bits = 2]` to its field:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! # #[derive(BitfieldSpecifier)]
//! # pub enum Status {
//! # Red, Green, Yellow, None,
//! # }
//! #
//! #[bitfield]
//! pub struct PackedData {
//! header: B4,
//! body: B9,
//! is_alive: bool,
//! #[bits = 2]
//! status: Status,
//! }
//! ```
//!
//! Setting and getting our new `status` field is naturally as follows:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! # #[derive(BitfieldSpecifier)]
//! # #[derive(Debug, PartialEq, Eq)]
//! # pub enum Status {
//! # Red, Green, Yellow, None,
//! # }
//! #
//! # #[bitfield]
//! # pub struct PackedData {
//! # header: B4,
//! # body: B9,
//! # is_alive: bool,
//! # #[bits = 2]
//! # status: Status,
//! # }
//! #
//! let mut data = PackedData::new()
//! .with_status(Status::Green);
//! assert_eq!(data.status(), Status::Green);
//! data.set_status(Status::Red);
//! assert_eq!(data.status(), Status::Red);
//! ```
//!
//! #### Example: Skipping Fields
//!
//! It might make sense to only allow users to set or get information from a field or
//! even to entirely disallow interaction with a bitfield. For this the `#[skip]` attribute
//! can be used on a bitfield of a `#[bitfield]` annotated struct.
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[bitfield]
//! pub struct SomeBitsUndefined {
//! #[skip(setters)]
//! read_only: bool,
//! #[skip(getters)]
//! write_only: bool,
//! #[skip]
//! unused: B6,
//! }
//! ```
//!
//! It is possible to use `#[skip(getters, setters)]` or `#[skip(getters)]` followed by a `#[skip(setters)]`
//! attribute applied on the same bitfield. The effects are the same. When skipping both, getters and setters,
//! it is possible to completely avoid having to specify a name:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[bitfield]
//! pub struct SomeBitsUndefined {
//! #[skip] __: B2,
//! is_activ: bool,
//! #[skip] __: B2,
//! is_received: bool,
//! #[skip] __: B2,
//! }
//! ```
//!
//! #### Example: Unfilled Bitfields
//!
//! Sometimes it might be useful to not be required to construct a bitfield that defines
//! all bits and therefore is required to have a bit width divisible by 8. In this case
//! you can use the `filled: bool` parameter of the `#[bitfield]` macro in order to toggle
//! this for your respective bitfield:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[bitfield(filled = false)]
//! pub struct SomeBitsUndefined {
//! is_compact: bool,
//! is_secure: bool,
//! pre_status: B3,
//! }
//! ```
//!
//! In the above example `SomeBitsUndefined` only defines the first 5 bits and leaves the rest
//! 3 bits of its entire 8 bits undefined. The consequences are that its generated `from_bytes`
//! method is fallible since it must guard against those undefined bits.
//!
//! #### Example: Recursive Bitfields
//!
//! It is possible to use `#[bitfield]` structs as fields of `#[bitfield]` structs.
//! This is generally useful if there are some common fields for multiple bitfields
//! and is achieved by adding the `#[derive(BitfieldSpecifier)]` attribute to the struct
//! annotated with `#[bitfield]`:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! # #[derive(BitfieldSpecifier)]
//! # pub enum Status {
//! # Red, Green, Yellow, None,
//! # }
//! #
//! #[bitfield(filled = false)]
//! #[derive(BitfieldSpecifier)]
//! pub struct Header {
//! is_compact: bool,
//! is_secure: bool,
//! pre_status: Status,
//! }
//!
//! #[bitfield]
//! pub struct PackedData {
//! header: Header,
//! body: B9,
//! is_alive: bool,
//! status: Status,
//! }
//! ```
//!
//! With the `bits: int` parameter of the `#[bitfield]` macro on the `Header` struct and the
//! `#[bits: int]` attribute of the `#[derive(BitfieldSpecifier)]` on the `Status` enum we
//! can have additional compile-time guarantees about the bit widths of the resulting entities:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[derive(BitfieldSpecifier)]
//! #[bits = 2]
//! pub enum Status {
//! Red, Green, Yellow, None,
//! }
//!
//! #[bitfield(bits = 4)]
//! #[derive(BitfieldSpecifier)]
//! pub struct Header {
//! is_compact: bool,
//! is_secure: bool,
//! #[bits = 2]
//! pre_status: Status,
//! }
//!
//! #[bitfield(bits = 16)]
//! pub struct PackedData {
//! #[bits = 4]
//! header: Header,
//! body: B9,
//! is_alive: bool,
//! #[bits = 2]
//! status: Status,
//! }
//! ```
//!
//! #### Example: Advanced Enum Specifiers
//!
//! For our `Status` enum we actually just need 3 status variants: `Green`, `Yellow` and `Red`.
//! We introduced the `None` status variants because `Specifier` enums by default are required
//! to have a number of variants that is a power of two. We can ship around this by specifying
//! `#[bits = 2]` on the top and get rid of our placeholder `None` variant while maintaining
//! the invariant of it requiring 2 bits:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//!
//! #[derive(BitfieldSpecifier)]
//! #[bits = 2]
//! pub enum Status {
//! Red, Green, Yellow,
//! }
//! ```
//!
//! However, having such enums now yields the possibility that a bitfield might contain invalid bit
//! patterns for such fields. We can safely access those fields with protected getters. For the sake
//! of demonstration we will use the generated `from_bytes` constructor with which we can easily
//! construct bitfields that may contain invalid bit patterns:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! # use modular_bitfield::error::InvalidBitPattern;
//! #
//! # #[derive(BitfieldSpecifier)]
//! # #[derive(Debug, PartialEq, Eq)]
//! # #[bits = 2]
//! # pub enum Status {
//! # Red, Green, Yellow,
//! # }
//! #
//! # #[bitfield(filled = false)]
//! # #[derive(BitfieldSpecifier)]
//! # pub struct Header {
//! # is_compact: bool,
//! # is_secure: bool,
//! # pre_status: Status,
//! # }
//! #
//! # #[bitfield]
//! # pub struct PackedData {
//! # header: Header,
//! # body: B9,
//! # is_alive: bool,
//! # status: Status,
//! # }
//! #
//! let mut data = PackedData::from_bytes([0b0000_0000, 0b1100_0000]);
//! // The 2 status field bits are invalid -----^^
//! // as Red = 0x00, Green = 0x01 and Yellow = 0x10
//! assert_eq!(data.status_or_err(), Err(InvalidBitPattern { invalid_bytes: 0b11 }));
//! data.set_status(Status::Green);
//! assert_eq!(data.status_or_err(), Ok(Status::Green));
//! ```
//!
//! ## Generated Implementations
//!
//! For the example `#[bitfield]` struct the following implementations are going to be generated:
//!
//! ```
//! # use modular_bitfield::prelude::*;
//! #
//! #[bitfield]
//! pub struct Example {
//! a: bool,
//! b: B7,
//! }
//! ```
//!
//! | Signature | Description |
//! |:--|:--|
//! | `fn new() -> Self` | Creates a new instance of the bitfield with all bits initialized to 0. |
//! | `fn from_bytes([u8; 1]) -> Self` | Creates a new instance of the bitfield from the given raw bytes. |
//! | `fn into_bytes(self) -> [u8; 1]` | Returns the underlying bytes of the bitfield. |
//!
//! And below the generated signatures for field `a`:
//!
//! | Signature | Description |
//! |:--|:--|
//! | `fn a() -> bool` | Returns the value of `a` or panics if invalid. |
//! | `fn a_or_err() -> Result<bool, InvalidBitPattern<u8>>` | Returns the value of `a` of an error providing information about the invalid bits. |
//! | `fn set_a(&mut self, new_value: bool)` | Sets `a` to the new value or panics if `new_value` contains invalid bits. |
//! | `fn set_a_checked(&mut self, new_value: bool) -> Result<(), OutOfBounds>` | Sets `a` to the new value of returns an out of bounds error. |
//! | `fn with_a(self, new_value: bool) -> Self` | Similar to `set_a` but useful for method chaining. |
//! | `fn with_a_checked(self, new_value: bool) -> Result<Self, OutOfBounds>` | Similar to `set_a_checked` but useful for method chaining. |
//!
//! ## Generated Structure
//!
//! From David Tolnay's procedural macro workshop:
//!
//! The macro conceptualizes given structs as a sequence of bits 0..N.
//! The bits are grouped into fields in the order specified by the struct written by the user.
//!
//! The `#[bitfield]` attribute rewrites the caller's struct into a private byte array representation
//! with public getter and setter methods for each field.
//! The total number of bits N is required to be a multiple of 8: This is checked at compile time.
//!
//! ### Example
//!
//! The following invocation builds a struct with a total size of 32 bits or 4 bytes.
//! It places field `a` in the least significant bit of the first byte,
//! field `b` in the next three least significant bits,
//! field `c` in the remaining four most significant bits of the first byte,
//! and field `d` spanning the next three bytes.
//!
//! ```rust
//! use modular_bitfield::prelude::*;
//!
//! #[bitfield]
//! pub struct MyFourBytes {
//! a: B1,
//! b: B3,
//! c: B4,
//! d: B24,
//! }
//! ```
//! ```no_compile
//! least significant bit of third byte
//! ┊ most significant
//! ┊ ┊
//! ┊ ┊
//! ║ first byte ║ second byte ║ third byte ║ fourth byte ║
//! ╟───────────────╫───────────────╫───────────────╫───────────────╢
//! ║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
//! ╟─╫─────╫───────╫───────────────────────────────────────────────╢
//! ║a║ b ║ c ║ d ║
//! ┊ ┊
//! ┊ ┊
//! least significant bit of d most significant
//! ```
#![no_std]
#![forbid(unsafe_code)]
extern crate static_assertions;
pub mod error;
#[doc(hidden)]
pub mod private;
use self::error::{
InvalidBitPattern,
OutOfBounds,
};
pub use modular_bitfield_impl::{
bitfield,
BitfieldSpecifier,
};
/// The prelude: `use modular_bitfield::prelude::*;`
pub mod prelude {
pub use super::{
bitfield,
specifiers::*,
BitfieldSpecifier,
Specifier,
};
}
/// Trait implemented by all bitfield specifiers.
///
/// Should generally not be implemented directly by users
/// but through the macros provided by the crate.
///
/// # Note
///
/// These can be all unsigned fixed-size primitives,
/// represented by `B1, B2, ... B64` and enums that
/// derive from `BitfieldSpecifier`.
pub trait Specifier {
/// The amount of bits used by the specifier.
const BITS: usize;
/// The base type of the specifier.
///
/// # Note
///
/// This is the type that is used internally for computations.
type Bytes;
/// The interface type of the specifier.
///
/// # Note
///
/// This is the type that is used for the getters and setters.
type InOut;
/// Converts some bytes into the in-out type.
///
/// # Errors
///
/// If the in-out type is out of bounds. This can for example happen if your
/// in-out type is `u8` (for `B7`) but you specified a value that is bigger
/// or equal to 128 which exceeds the 7 bits.
fn into_bytes(input: Self::InOut) -> Result<Self::Bytes, OutOfBounds>;
/// Converts the given bytes into the in-out type.
///
/// # Errors
///
/// If the given byte pattern is invalid for the in-out type.
/// This can happen for example for enums that have a number of variants which
/// is not equal to the power of two and therefore yields some invalid bit
/// patterns.
fn from_bytes(
bytes: Self::Bytes,
) -> Result<Self::InOut, InvalidBitPattern<Self::Bytes>>;
}
/// The default set of predefined specifiers.
pub mod specifiers {
::modular_bitfield_impl::define_specifiers!();
}