1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
//! # External, 32 kHz crystal oscillator controller
//!
//! ## Overview
//!
//! The `xosc32k` module provides access to the 32 kHz external crystal
//! oscillator controller (XOSC32K) within the `OSC32KCTRL` peripheral.
//!
//! The peripheral can operate in two [`Mode`]s. It can accept an external
//! clock, or it can interface with an crystal oscillator. In both cases, the
//! clock must be 32,768 Hz.
//!
//! When used with an external clock, only one GPIO [`Pin`] is required, but
//! when used with a crystal oscillator, two GPIO `Pin`s are required. The
//! [`XIn32`] `Pin` is used in both `Mode`s, while the [`XOut32`] `Pin` is only
//! used in [`CrystalMode`].
//!
//! ## Clock tree structure
//!
//! The `XOSC32K` clock is unlike most other clocks, because it has two separate
//! outputs, one at 32 kHz and another divided down to 1 kHz. Moreover, none,
//! either or both of these outputs can be enabled at any given time.
//!
//! We can see, then, that the `XOSC32K` peripheral forms its own, miniature
//! clock tree. There is a 1:N producer clock that must be enabled first; and
//! there are two possible consumer clocks that can be independently and
//! optionally enabled. In fact, this structure is illustrated by the `XOSC32K`
//! register, which has three different enable bits: `ENABLE`, `EN32K` and
//! `EN1K`.
//!
//! To represent this structure in the type system, we divide the `XOSC32K`
//! peripheral into these three clocks. Users start by enabling the
//! [`Xosc32kBase`] clock, which corresponds to setting the `XOSC32K` register
//! `ENABLE` bit. The call to [`Xosc32kBase::enable`] returns a 1:N [`Enabled`]
//! clock [`Source`], which can be consumed by both the [`Xosc32k`] and
//! [`Xosc1k`] clocks. Enabling either of these two clocks will [`Increment`]
//! the [`EnabledXosc32kBase`] counter, preventing it from being disabled.
//! Note that `Xosc32k` and `Xosc1k` are themselves 1:N clocks as well.
//!
//! ## Clock failure detection and write lock
//!
//! Like the [`Xosc`] clocks, the XOSC32K peripheral also has clock failure
//! detection. However, unlike the `XOSCCTRL` registers, the `XOSC32K` register
//! has a dedicated write lock bit that will freeze its configuration until the
//! next power-on reset.
//!
//! While `Xosc` clock failure detection is configured directly in the
//! `XOSCCTRL` register, the XOSC32K peripheral has a separate, dedicated
//! clock failure detection register (`CFDCTRL`). This difference likely exists
//! to provide control of clock failure detection *after* write lock has been
//! enabled.
//!
//! In this module, write lock is implemented by simply dropping the
//! [`Xosc32kBase`] clock, which prevents any further access to the `XOSC32K`
//! register. Thus, to allow control of clock failure detection in the presence
//! of write lock, we provide a dedicated [`Xosc32kCfd`] interface, which has
//! exclusive control over the `CFDCTRL` register.
//!
//! ## Example
//!
//! Creating and configuring the XOSC32K clocks proceeds according to the
//! principles outlined in the [`clock` module documentation]. It is best shown
//! with an example.
//!
//! Let's start by using [`clock_system_at_reset`] to access the HAL clocking
//! structs. We'll also need access to the GPIO [`Pins`].
//!
//! ```no_run
//! use atsamd_hal::{
//! clock::v2::{
//! clock_system_at_reset,
//! osculp32k::OscUlp32k,
//! xosc32k::{
//! ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! Xosc32kCfd,
//! },
//! },
//! gpio::Pins,
//! pac::Peripherals,
//! };
//! let mut pac = Peripherals::take().unwrap();
//! let pins = Pins::new(pac.PORT);
//! let (buses, clocks, tokens) = clock_system_at_reset(
//! pac.OSCCTRL,
//! pac.OSC32KCTRL,
//! pac.GCLK,
//! pac.MCLK,
//! &mut pac.NVMCTRL,
//! );
//! ```
//!
//! Next, we create the [`Xosc32kBase`] clock from a 32 kHz oscillator using its
//! corresponding [`Xosc32kBaseToken`] and the [`XIn32`] and [`XOut32`] `Pin`s.
//! We then set the delay before the clock is unmasked by providing a desired
//! [`StartUpDelay`]. Finally, we select a [`ControlGainMode`] for the crystal
//! before enabling it.
//!
//! ```no_run
//! # use atsamd_hal::{
//! # clock::v2::{
//! # clock_system_at_reset,
//! # osculp32k::OscUlp32k,
//! # xosc32k::{
//! # ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! # Xosc32kCfd,
//! # },
//! # },
//! # gpio::Pins,
//! # pac::Peripherals,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! # pac.OSCCTRL,
//! # pac.OSC32KCTRL,
//! # pac.GCLK,
//! # pac.MCLK,
//! # &mut pac.NVMCTRL,
//! # );
//! let xosc32k_base = Xosc32kBase::from_crystal(tokens.xosc32k.base, pins.pa00, pins.pa01)
//! .start_up_delay(StartUpDelay::Delay1s)
//! .control_gain_mode(ControlGainMode::HighSpeed)
//! .enable();
//! ```
//!
//! At this point, we opt to wait until the `Xosc32kBase` oscillator `is_ready`
//! and stable.
//!
//! ```no_run
//! # use atsamd_hal::{
//! # clock::v2::{
//! # clock_system_at_reset,
//! # osculp32k::OscUlp32k,
//! # xosc32k::{
//! # ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! # Xosc32kCfd,
//! # },
//! # },
//! # gpio::Pins,
//! # pac::Peripherals,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! # pac.OSCCTRL,
//! # pac.OSC32KCTRL,
//! # pac.GCLK,
//! # pac.MCLK,
//! # &mut pac.NVMCTRL,
//! # );
//! # let xosc32k_base = Xosc32kBase::from_crystal(tokens.xosc32k.base, pins.pa00, pins.pa01)
//! # .start_up_delay(StartUpDelay::Delay1s)
//! # .control_gain_mode(ControlGainMode::HighSpeed)
//! # .enable();
//! while !xosc32k_base.is_ready() {}
//! ```
//!
//! With the [`EnabledXosc32kBase`] clock in hand, we can enable the [`Xosc1k`]
//! and [`Xosc32k`], each of which [`Increment`]s the [`Enabled`] counter.
//! Once we are satisfied with the configuration, we can call `write_lock` to
//! lock the XOSC32K configuration at the hardware level. Doing so also consumes
//! the `EnabledXosc32kBase` clock, which eliminates any ability to change the
//! configuration at the API level.
//!
//! ```no_run
//! # use atsamd_hal::{
//! # clock::v2::{
//! # clock_system_at_reset,
//! # osculp32k::OscUlp32k,
//! # xosc32k::{
//! # ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! # Xosc32kCfd,
//! # },
//! # },
//! # gpio::Pins,
//! # pac::Peripherals,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! # pac.OSCCTRL,
//! # pac.OSC32KCTRL,
//! # pac.GCLK,
//! # pac.MCLK,
//! # &mut pac.NVMCTRL,
//! # );
//! # let xosc32k_base = Xosc32kBase::from_crystal(tokens.xosc32k.base, pins.pa00, pins.pa01)
//! # .start_up_delay(StartUpDelay::Delay1s)
//! # .control_gain_mode(ControlGainMode::HighSpeed)
//! # .enable();
//! # while !xosc32k_base.is_ready() {}
//! let (xosc1k, xosc32k_base) = Xosc1k::enable(tokens.xosc32k.xosc1k, xosc32k_base);
//! let (xosc32k, xosc32k_base) = Xosc32k::enable(tokens.xosc32k.xosc32k, xosc32k_base);
//! xosc32k_base.write_lock();
//! ```
//!
//! However, while we have locked the XOSC32K configuration, we still want to
//! enable clock failure detection, which will continuously monitor the clock
//! and switch to a safe, backup clock if necessary.
//!
//! To do so, we must first enable the backup clock, which, for the XOSC32K, is
//! the [`OscUlp32k`]. The OSCULP32K peripheral has a nearly identical structure
//! to the XOSC32K; we create an [`EnabledOscUlp32k`] from the
//! [`EnabledOscUlp32kBase`] clock and the corresponding [`OscUlp32kToken`].
//!
//! Upon creation of the [`Xosc32kCfd`] struct, we register it as a consumer of
//! the `EnabledOscUlp32k`, which will `Increment` its `Counter` as well. When
//! creating the safe clock, the `OscUlp32k` can be optionally divided by two,
//! which is selected with [`SafeClockDiv`].
//!
//! ```no_run
//! # use atsamd_hal::{
//! # clock::v2::{
//! # clock_system_at_reset,
//! # osculp32k::OscUlp32k,
//! # xosc32k::{
//! # ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! # Xosc32kCfd,
//! # },
//! # },
//! # gpio::Pins,
//! # pac::Peripherals,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! # pac.OSCCTRL,
//! # pac.OSC32KCTRL,
//! # pac.GCLK,
//! # pac.MCLK,
//! # &mut pac.NVMCTRL,
//! # );
//! # let xosc32k_base = Xosc32kBase::from_crystal(tokens.xosc32k.base, pins.pa00, pins.pa01)
//! # .start_up_delay(StartUpDelay::Delay1s)
//! # .control_gain_mode(ControlGainMode::HighSpeed)
//! # .enable();
//! # while !xosc32k_base.is_ready() {}
//! # let (xosc1k, xosc32k_base) = Xosc1k::enable(tokens.xosc32k.xosc1k, xosc32k_base);
//! # let (xosc32k, xosc32k_base) = Xosc32k::enable(tokens.xosc32k.xosc32k, xosc32k_base);
//! # xosc32k_base.write_lock();
//! let (osculp32k, osculp32k_base) =
//! OscUlp32k::enable(tokens.osculp32k.osculp32k, clocks.osculp32k_base);
//! let (mut cfd, osculp32k) =
//! Xosc32kCfd::enable(tokens.xosc32k.cfd, osculp32k, SafeClockDiv::Div1);
//! ```
//!
//! Finally, with the clock failure detection interface in hand, we can do
//! things like check if the XOSC32K [`has_failed`] or if it [`is_switched`] to
//! the safe clock. If we are able to recover from a clock failure, we can even
//! [`switch_back`] to the crystal oscillator.
//!
//! ```no_run
//! # use atsamd_hal::{
//! # clock::v2::{
//! # clock_system_at_reset,
//! # osculp32k::OscUlp32k,
//! # xosc32k::{
//! # ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! # Xosc32kCfd,
//! # },
//! # },
//! # gpio::Pins,
//! # pac::Peripherals,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! # pac.OSCCTRL,
//! # pac.OSC32KCTRL,
//! # pac.GCLK,
//! # pac.MCLK,
//! # &mut pac.NVMCTRL,
//! # );
//! # let xosc32k_base = Xosc32kBase::from_crystal(tokens.xosc32k.base, pins.pa00, pins.pa01)
//! # .start_up_delay(StartUpDelay::Delay1s)
//! # .control_gain_mode(ControlGainMode::HighSpeed)
//! # .enable();
//! # while !xosc32k_base.is_ready() {}
//! # let (xosc1k, xosc32k_base) = Xosc1k::enable(tokens.xosc32k.xosc1k, xosc32k_base);
//! # let (xosc32k, xosc32k_base) = Xosc32k::enable(tokens.xosc32k.xosc32k, xosc32k_base);
//! # xosc32k_base.write_lock();
//! # let (osculp32k, osculp32k_base) =
//! # OscUlp32k::enable(tokens.osculp32k.osculp32k, clocks.osculp32k_base);
//! # let (mut cfd, osculp32k) =
//! # Xosc32kCfd::enable(tokens.xosc32k.cfd, osculp32k, SafeClockDiv::Div1);
//! if cfd.has_failed() && cfd.is_switched() {
//! cfd.switch_back();
//! }
//! ```
//!
//! The complete example is provided below.
//!
//! ```no_run
//! use atsamd_hal::{
//! clock::v2::{
//! clock_system_at_reset,
//! osculp32k::OscUlp32k,
//! xosc32k::{
//! ControlGainMode, SafeClockDiv, StartUpDelay, Xosc1k, Xosc32k, Xosc32kBase,
//! Xosc32kCfd,
//! },
//! },
//! gpio::Pins,
//! pac::Peripherals,
//! };
//! let mut pac = Peripherals::take().unwrap();
//! let pins = Pins::new(pac.PORT);
//! let (buses, clocks, tokens) = clock_system_at_reset(
//! pac.OSCCTRL,
//! pac.OSC32KCTRL,
//! pac.GCLK,
//! pac.MCLK,
//! &mut pac.NVMCTRL,
//! );
//! let xosc32k_base = Xosc32kBase::from_crystal(tokens.xosc32k.base, pins.pa00, pins.pa01)
//! .start_up_delay(StartUpDelay::Delay1s)
//! .control_gain_mode(ControlGainMode::HighSpeed)
//! .enable();
//! while !xosc32k_base.is_ready() {}
//! let (xosc1k, xosc32k_base) = Xosc1k::enable(tokens.xosc32k.xosc1k, xosc32k_base);
//! let (xosc32k, xosc32k_base) = Xosc32k::enable(tokens.xosc32k.xosc32k, xosc32k_base);
//! xosc32k_base.write_lock();
//! let (osculp32k, osculp32k_base) =
//! OscUlp32k::enable(tokens.osculp32k.osculp32k, clocks.osculp32k_base);
//! let (mut cfd, osculp32k) =
//! Xosc32kCfd::enable(tokens.xosc32k.cfd, osculp32k, SafeClockDiv::Div1);
//! if cfd.has_failed() && cfd.is_switched() {
//! cfd.switch_back();
//! }
//! ```
//!
//! [`clock` module documentation]: super
//! [`Pins`]: crate::gpio::Pins
//! [`clock_system_at_reset`]: super::clock_system_at_reset
//! [`Xosc`]: super::xosc::Xosc
//! [`OscUlp32k`]: super::osculp32k::OscUlp32k
//! [`EnabledOscUlp32k`]: super::osculp32k::EnabledOscUlp32k
//! [`OscUlp32kToken`]: super::osculp32k::OscUlp32kToken
//! [`EnabledOscUlp32kBase`]: super::osculp32k::EnabledOscUlp32kBase
//! [`OscUlp32k`]: super::osculp32k::OscUlp32k
//! [`has_failed`]: Xosc32kCfd::has_failed
//! [`is_switched`]: Xosc32kCfd::is_switched
//! [`switch_back`]: Xosc32kCfd::switch_back
use typenum::U0;
use crate::pac::osc32kctrl::xosc32k::{CGM_A, STARTUP_A};
use crate::pac::osc32kctrl::{status, CFDCTRL, XOSC32K};
use crate::gpio::{FloatingDisabled, Pin, PA00, PA01};
use crate::time::Hertz;
use crate::typelevel::{Decrement, Increment, PrivateDecrement, PrivateIncrement, Sealed};
use super::osculp32k::OscUlp32kId;
use super::{Enabled, Source};
//==============================================================================
// Tokens
//==============================================================================
/// Singleton token that can be exchanged for [`Xosc32kBase`]
///
/// As explained in the [`clock` module documentation](super), instances of
/// various `Token` types can be exchanged for actual clock types. They
/// typically represent clocks that are disabled at power-on reset.
///
/// The [`Xosc32kBase`] clock is disabled at power-on reset. To use it, you must
/// first exchange the token for an actual clock with
/// [`Xosc32kBase::from_clock`] or [`Xosc32kBase::from_crystal`].
pub struct Xosc32kBaseToken(());
/// Singleton token that can be exchanged for [`Xosc1k`]
///
/// As explained in the [`clock` module documentation](super), instances of
/// various `Token` types can be exchanged for actual clock types. They
/// typically represent clocks that are disabled at power-on reset.
///
/// The [`Xosc1k`] clock is disabled at power-on reset. To use it, you must
/// first exchange the token for an actual clock with [`Xosc1k::enable`].
pub struct Xosc1kToken(());
/// Singleton token that can be exchanged for [`Xosc32k`]
///
/// As explained in the [`clock` module documentation](super), instances of
/// various `Token` types can be exchanged for actual clock types. They
/// typically represent clocks that are disabled at power-on reset.
///
/// The [`Xosc32k`] clock is disabled at power-on reset. To use it, you must
/// first exchange the token for an actual clock with [`Xosc32k::enable`].
pub struct Xosc32kToken(());
/// Singleton token that can be exchanged for [`Xosc32kCfd`]
///
/// As explained in the [module-level documentation](self), clock failure
/// detection can be used even after the `XOSC32K` register has been write
/// locked. For that reason, users control clock failure detection through the
/// dedicated [`Xosc32kCfd`] type.
///
/// Clock failure detection is disabled at power-on reset. To use it, you must
/// first enable it by exchanging the token with [`Xosc32kCfd::enable`].
pub struct Xosc32kCfdToken(());
/// Set of tokens representing the disabled XOSC32K clocks power-on reset
pub struct Xosc32kTokens {
pub base: Xosc32kBaseToken,
pub xosc1k: Xosc1kToken,
pub xosc32k: Xosc32kToken,
pub cfd: Xosc32kCfdToken,
}
impl Xosc32kTokens {
/// Create the set of tokens
///
/// # Safety
///
/// There must never be more than one instance of these tokens at any given
/// time. See the notes on `Token` types and memory safety in the root of
/// the `clock` module for more details.
pub(super) unsafe fn new() -> Self {
Self {
base: Xosc32kBaseToken(()),
xosc1k: Xosc1kToken(()),
xosc32k: Xosc32kToken(()),
cfd: Xosc32kCfdToken(()),
}
}
}
impl Xosc32kBaseToken {
#[inline]
fn status(&self) -> status::R {
// Safety: We are only reading from the `STATUS` register, so there is
// no risk of memory corruption.
unsafe { (*crate::pac::OSC32KCTRL::PTR).status.read() }
}
/// Check whether the XOSC32K is stable and ready
#[inline]
fn is_ready(&self) -> bool {
self.status().xosc32krdy().bit()
}
#[inline]
fn xosc32k(&self) -> &XOSC32K {
// Safety: The `Xosc32kBaseToken` has exclusive access to the `XOSC32K`
// register. See the notes on `Token` types and memory safety in the
// root of the `clock` module for more details.
unsafe { &(*crate::pac::OSC32KCTRL::PTR).xosc32k }
}
/// Reset the XOSC32K register
#[inline]
fn reset(&mut self) {
self.xosc32k().reset();
}
/// Set most of the fields in the XOSC32K register
#[inline]
fn set_xosc32k(&mut self, settings: Settings) {
let xtalen = settings.mode == DynMode::CrystalMode;
self.xosc32k().modify(|_, w| {
w.cgm().variant(settings.cgm.into());
w.startup().variant(settings.start_up.into());
w.ondemand().bit(settings.on_demand);
w.runstdby().bit(settings.run_standby);
w.xtalen().bit(xtalen)
});
}
/// Disable the XOSC32K
#[inline]
fn enable(&mut self) {
self.xosc32k().modify(|_, w| w.enable().set_bit());
}
/// Disable the XOSC32K
#[inline]
fn disable(&mut self) {
self.xosc32k().modify(|_, w| w.enable().clear_bit());
}
/// Enable the 1 kHz output
#[inline]
fn enable_1k(&mut self) {
self.xosc32k().modify(|_, w| w.en1k().set_bit());
}
/// Disable the 1 kHz output
#[inline]
fn disable_1k(&mut self) {
self.xosc32k().modify(|_, w| w.en1k().clear_bit());
}
/// Enable the 32 kHz output
#[inline]
fn enable_32k(&mut self) {
self.xosc32k().modify(|_, w| w.en32k().set_bit());
}
/// Disable the 32 kHz output
#[inline]
fn disable_32k(&mut self) {
self.xosc32k().modify(|_, w| w.en32k().clear_bit());
}
/// Enable the write lock
#[inline]
fn write_lock(&mut self) {
self.xosc32k().modify(|_, w| w.wrtlock().set_bit());
}
}
impl Xosc32kCfdToken {
#[inline]
fn status(&self) -> status::R {
// Safety: We are only reading from the `STATUS` register, so there is
// no risk of memory corruption.
unsafe { (*crate::pac::OSC32KCTRL::PTR).status.read() }
}
/// Check whether the XOSC32K has triggered failure detection
#[inline]
fn has_failed(&self) -> bool {
self.status().xosc32kfail().bit()
}
/// Check whether the XOSC32K has been switched to the safe clock
#[inline]
fn is_switched(&self) -> bool {
self.status().xosc32ksw().bit()
}
#[inline]
fn cfdctrl(&self) -> &CFDCTRL {
// Safety: The `Xosc32kCfdToken` has exclusive access to the `CFDCTRL`
// register. See the notes on `Token` types and memory safety in the
// root of the `clock` module for more details.
unsafe { &(*crate::pac::OSC32KCTRL::PTR).cfdctrl }
}
/// Enable clock failure detection and set the safe clock divider
#[inline]
fn enable(&mut self, div: SafeClockDiv) {
self.cfdctrl().modify(|_, w| {
w.cfdpresc().bit(div.into());
w.cfden().set_bit()
});
}
/// Disable clock failure detection
#[inline]
fn disable(&mut self) {
self.cfdctrl().modify(|_, w| w.cfden().clear_bit());
}
/// Switch from the safe clock back to the XOSC32K clock/oscillator
///
/// This bit is cleared by the hardware after successfully switching back
#[inline]
fn switch_back(&mut self) {
self.cfdctrl().modify(|_, w| w.swback().set_bit());
}
}
//==============================================================================
// Settings
//==============================================================================
// Collection of XOSC32K register fields
//
// All of these fields are set in a single write to XOSC32K during the call to
// [`Xosc32kBase::enable`]. The remaining fields are only modified after it has
// been enabled.
#[derive(Clone, Copy)]
struct Settings {
start_up: StartUpDelay,
cgm: ControlGainMode,
on_demand: bool,
run_standby: bool,
mode: DynMode,
}
//==============================================================================
// XIn32 & XOut32
//==============================================================================
/// Type alias for the XOSC32K input [`Pin`]
pub type XIn32 = Pin<PA00, FloatingDisabled>;
/// Type alias for the XOSC32K output [`Pin`]
pub type XOut32 = Pin<PA01, FloatingDisabled>;
//==============================================================================
// SafeClockDiv
//==============================================================================
/// Division factor for the safe clock prescaler
///
/// If an XOSC32K clock failure is detected, the hardware will switch to a safe
/// clock derived from the [`OscUlp32k`]. This enum sets the divider between it
/// and the safe clock frequency. The divider can be 1 or 2.
///
///[`OscUlp32k`]: super::osculp32k::OscUlp32k
#[repr(u8)]
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum SafeClockDiv {
#[default]
Div1,
Div2,
}
impl From<SafeClockDiv> for bool {
fn from(div: SafeClockDiv) -> Self {
match div {
SafeClockDiv::Div1 => false,
SafeClockDiv::Div2 => true,
}
}
}
//==============================================================================
// StartUpDelay
//==============================================================================
/// Start up delay before continuous monitoring takes effect
///
/// After a hard reset or waking from sleep, the XOSC32K output will remained
/// masked for the start up period, to ensure an unstable clock is not
/// propagated into the digital logic.
///
/// The start up delay is counted using the [`OscUlp32k`] clock.
///
/// [`OscUlp32k`]: super::osculp32k::OscUlp32k
#[repr(u8)]
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum StartUpDelay {
#[default]
Delay63ms,
Delay125ms,
Delay500ms,
Delay1s,
Delay2s,
Delay4s,
Delay8s,
}
impl From<StartUpDelay> for STARTUP_A {
fn from(delay: StartUpDelay) -> Self {
match delay {
StartUpDelay::Delay63ms => STARTUP_A::CYCLE2048,
StartUpDelay::Delay125ms => STARTUP_A::CYCLE4096,
StartUpDelay::Delay500ms => STARTUP_A::CYCLE16384,
StartUpDelay::Delay1s => STARTUP_A::CYCLE32768,
StartUpDelay::Delay2s => STARTUP_A::CYCLE65536,
StartUpDelay::Delay4s => STARTUP_A::CYCLE131072,
StartUpDelay::Delay8s => STARTUP_A::CYCLE262144,
}
}
}
//==============================================================================
// ControlGainMode
//==============================================================================
/// Gain mode for the XOSC32K control loop
///
/// The XOSC32K crystal oscillator control loop has a configurable gain to allow
/// users to trade power for speed and stability.
#[derive(Copy, Clone, Default, PartialEq, Eq)]
pub enum ControlGainMode {
#[default]
Standard,
HighSpeed,
}
impl From<ControlGainMode> for CGM_A {
fn from(cgm: ControlGainMode) -> Self {
match cgm {
ControlGainMode::Standard => CGM_A::XT,
ControlGainMode::HighSpeed => CGM_A::HS,
}
}
}
//==============================================================================
// DynMode
//==============================================================================
/// Value-level enum identifying one of two possible XOSC32K operating modes
///
/// The XOSC32K clock can be sourced from either an external clock or crystal
/// oscillator. The variants of this enum identify one of these two possible
/// operating modes.
///
/// `DynMode` is the value-level equivalent of [`Mode`].
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum DynMode {
#[default]
ClockMode,
CrystalMode,
}
//==============================================================================
// Mode
//==============================================================================
/// Type-level enum for the XOSC32K operation mode
///
/// The XOSC32K clock can be sourced from either an external clock or a crystal
/// oscillator. This type-level `enum` provides two type-level variants,
/// [`ClockMode`] and [`CrystalMode`], representing these operating modes.
///
/// `Mode` is the type-level equivalent of [`DynMode`]. See the documentation on
/// [type-level programming] and specifically [type-level enums] for more
/// details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub trait Mode: Sealed {
const DYN: DynMode;
#[doc(hidden)]
type Pins;
}
/// Type-level variant of the XOSC32K operating [`Mode`]
///
/// In this `Mode`, the XOSC32K clock will be sourced from an external clock.
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub enum ClockMode {}
impl Sealed for ClockMode {}
impl Mode for ClockMode {
const DYN: DynMode = DynMode::ClockMode;
type Pins = XIn32;
}
/// Type-level variant of the XOSC32K operating [`Mode`]
///
/// In this `Mode`, the XOSC32K clock will be sourced from a crystal oscillator.
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub enum CrystalMode {}
impl Sealed for CrystalMode {}
impl Mode for CrystalMode {
const DYN: DynMode = DynMode::CrystalMode;
type Pins = (XIn32, XOut32);
}
//==============================================================================
// Xosc32kBase
//==============================================================================
/// XOSC32K base clock, which feeds the [`Xosc1k`] and [`Xosc32k`] clocks
///
/// The XOSC32K peripheral has two possible clock outputs, one at 32 kHz and
/// another at 1 kHz. This structure is represented in the type system as a set
/// of three clocks forming a small clock tree. The [`Xosc32kBase`] clock
/// represents the configurable base oscillator that feeds the optional
/// [`Xosc1k`] and [`Xosc32k`] output clocks. See the
/// [module-level documentation](super) for details and examples.
pub struct Xosc32kBase<M: Mode> {
token: Xosc32kBaseToken,
pins: M::Pins,
settings: Settings,
}
/// The [`Enabled`] [`Xosc32kBase`] clock
///
/// As described in the [`clock` module documentation](super), the [`Enabled`]
/// wrapper implements compile-time clock tree safety by tracking the number of
/// clocks consuming the [`Xosc32kBase`] clock and restricts access to the
/// underlying type to prevent misuse.
///
/// As with [`Enabled`], the default value for `N` is `U0`; if left unspecified,
/// the counter is assumed to be zero.
pub type EnabledXosc32kBase<M, N = U0> = Enabled<Xosc32kBase<M>, N>;
impl Xosc32kBase<ClockMode> {
/// Create the [`Xosc32kBase`] clock from an external clock, taking
/// ownership of the [`XIn32`] [`Pin`]
///
/// Creating an [`Xosc32kBase`] clock does not modify any of the hardware
/// registers. It only creates a struct to track the configuration. The
/// configuration data is stored until the user calls [`enable`]. At that
/// point, all of the registers are written according to the initialization
/// procedures specified in the datasheet, and an [`EnabledXosc32kBase`]
/// clock is returned. The `Xosc32kBase` clock is not active or useful until
/// that point.
///
/// [`enable`]: Xosc32kBase::enable
#[inline]
pub fn from_clock(token: Xosc32kBaseToken, xin32: impl Into<XIn32>) -> Self {
let pins = xin32.into();
Self::new(token, pins)
}
/// Consume the [`Xosc32kBase`] and release the [`Xosc32kBaseToken`] and
/// [`XIn32`] [`Pin`]
#[inline]
pub fn free(self) -> (Xosc32kBaseToken, XIn32) {
(self.token, self.pins)
}
}
impl Xosc32kBase<CrystalMode> {
/// Create the [`Xosc32kBase`] clock from an external crystal oscillator,
/// taking ownership of the [`XIn32`] and [`XOut32`] [`Pin`]s.
///
/// Creating an [`Xosc32kBase`] clock does not modify any of the hardware
/// registers. It only creates a struct to track the configuration. The
/// configuration data is stored until the user calls [`enable`]. At that
/// point, all of the registers are written according to the initialization
/// procedures specified in the datasheet, and an [`EnabledXosc32kBase`]
/// clock is returned. The `Xosc32kBase` is not active or useful until that
/// point.
///
/// [`enable`]: Xosc32kBase::enable
#[inline]
pub fn from_crystal(
token: Xosc32kBaseToken,
xin32: impl Into<XIn32>,
xout32: impl Into<XOut32>,
) -> Self {
let pins = (xin32.into(), xout32.into());
Self::new(token, pins)
}
/// Consume the [`Xosc32kBase`] and release the [`Xosc32kBaseToken`],
/// [`XIn32`] and [`XOut32`] [`Pin`]s
#[inline]
pub fn free(self) -> (Xosc32kBaseToken, XIn32, XOut32) {
let (xin32, xout32) = self.pins;
(self.token, xin32, xout32)
}
/// Set the crystal oscillator [`ControlGainMode`]
#[inline]
pub fn control_gain_mode(mut self, cgm: ControlGainMode) -> Self {
self.settings.cgm = cgm;
self
}
}
impl<M: Mode> Xosc32kBase<M> {
#[inline]
fn new(token: Xosc32kBaseToken, pins: M::Pins) -> Self {
let settings = Settings {
start_up: StartUpDelay::Delay63ms,
cgm: ControlGainMode::Standard,
on_demand: true,
run_standby: false,
mode: M::DYN,
};
Self {
token,
pins,
settings,
}
}
/// Set the start up delay before the [`Xosc32kBase`] clock is unmasked and
/// continuously monitored
///
/// During the start up period, the [`Xosc32kBase`] clock is masked to
/// prevent clock instability from propagating to the digital logic. During
/// this time, clock failure detection is disabled.
#[inline]
pub fn start_up_delay(mut self, delay: StartUpDelay) -> Self {
self.settings.start_up = delay;
self
}
/// Control the XOSC32K on-demand behavior
///
/// When the on-demand is enabled, the XOSC32K clocks will only run in Idle
/// or Standby sleep modes if it is requested by a peripheral. Otherwise,
/// its behavior is dependent on the run-standby setting.
#[inline]
pub fn on_demand(mut self, on_demand: bool) -> Self {
self.settings.on_demand = on_demand;
self
}
/// Control the XOSC32K behavior in Standby sleep mode
///
/// When `RUNSTDBY` is disabled, the XOSC32K clocks will never run in
/// Standby sleep mode unless `ONDEMAND` is enabled and a clock is requested
/// by a peripheral.
///
/// When `RUNSTDBY` is enabled, the `Xosc` will run in Standby sleep mode,
/// but it can still be disabled if `ONDEMAND` is enabled and a clock is not
/// requested.
#[inline]
pub fn run_standby(mut self, run_standby: bool) -> Self {
self.settings.run_standby = run_standby;
self
}
/// Freeze the XOSC32K configuration until power-on reset
///
/// This function sets the write-lock bit, which freezes the XOSC32K
/// configuration at the hardware level until power-on reset. At the API
/// level, it also consumes and drops the [`Xosc32kBase`], which prevents
/// any further modifications.
///
/// **NOTE:** Because the `Xosc32kBase` is not yet enabled, calling this
/// method will lock both the [`Xosc1k`] and [`Xosc32k`] in their disabled
/// state.
#[inline]
pub fn write_lock(mut self) {
self.token.write_lock();
}
/// Enable the [`Xosc32kBase`] clock, so that it can be used as a clock
/// [`Source`] for the [`Xosc1k`] and [`Xosc32k`] clocks
///
/// As mentioned when creating a new `Xosc32kBase`, no hardware registers
/// are actually modified until this call. Rather, the desired configuration
/// is stored internally, and the `Xosc32kBase` is initialized and
/// configured here according to the datasheet.
///
/// The returned value is an [`EnabledXosc32kBase`] that can be used as a
/// clock [`Source`] for the [`Xosc1k`] and [`Xosc32k`] clocks.
#[inline]
pub fn enable(mut self) -> EnabledXosc32kBase<M> {
self.token.reset();
self.token.set_xosc32k(self.settings);
self.token.enable();
Enabled::new(self)
}
}
impl<M: Mode> EnabledXosc32kBase<M> {
/// Disable the [`Xosc32kBase`] clock
///
/// This method is only implemented for `N = U0`, which means the clock can
/// only be disabled when no other clocks consume this [`Xosc32kBase`]
/// clock.
#[inline]
pub fn disable(mut self) -> Xosc32kBase<M> {
self.0.token.disable();
self.0
}
}
impl<M: Mode, N> EnabledXosc32kBase<M, N> {
/// Check whether the XOSC32K is stable and ready to be used as a clock
/// [`Source`]
#[inline]
pub fn is_ready(&self) -> bool {
self.0.token.is_ready()
}
/// Freeze the XOSC32K configuration until power-on reset
///
/// This function sets the write-lock bit, which freezes the XOSC32K
/// configuration at the hardware level until power-on reset. At the API
/// level, it also consumes and drops the [`Xosc32kBase`] clock, which
/// prevents any further modifications.
#[inline]
pub fn write_lock(mut self) {
self.0.token.write_lock();
}
}
//==============================================================================
// Xosc32kCfd
//==============================================================================
/// Clock failure detection interface for the XOSC32K peripheral
///
/// The XOSC32K peripheral provides a hardware method to continuously monitor
/// the clock to verify it is still running. In the event of a failure, the
/// output will be switched to a "safe clock" derived from the [`OscUlp32k`].
/// The XOSC32K peripheral provides a prescaler to optionally divide the
/// `OscUlp32k` by two.
///
/// Note that clock failure is triggered when four safe clock periods pass
/// without seeing a rising & falling edge pair on the XOSC32K clock. Once
/// failure is detected, the corresponding bit in the `STATUS` register will
/// go high and an interrupt will be triggered.
///
/// If the external clock can be fixed, the XOSC32K clock can be switched back
/// using [`Xosc32kCfd::switch_back`].
///
/// Because the safe clock makes use of the `OscUlp32k`, the `Xosc32kCfd` must
/// register as a consumer of the [`EnabledOscUlp32k`] and [`Increment`] its
/// counter.
///
/// [`OscUlp32k`]: super::osculp32k::OscUlp32k
/// [`EnabledOscUlp32k`]: super::osculp32k::EnabledOscUlp32k
pub struct Xosc32kCfd {
token: Xosc32kCfdToken,
}
impl Xosc32kCfd {
/// Enable continuous monitoring of the XOSC32K for clock failure
///
/// Because the safe clock makes use of the [`OscUlp32k`], the `Xosc32kCfd`
/// must register as a consumer of the [`EnabledOscUlp32k`] and
/// [`Increment`] its counter.
///
/// [`OscUlp32k`]: super::osculp32k::OscUlp32k
/// [`EnabledOscUlp32k`]: super::osculp32k::EnabledOscUlp32k
#[inline]
pub fn enable<S>(
mut token: Xosc32kCfdToken,
osc_ulp_32k: S,
div: SafeClockDiv,
) -> (Xosc32kCfd, S::Inc)
where
S: Source<Id = OscUlp32kId> + Increment,
{
token.enable(div);
(Self { token }, osc_ulp_32k.inc())
}
/// Check whether the XOSC32K has triggered clock failure detection
///
/// Failure is triggered when four safe clock periods pass without seeing a
/// rising & falling edge pair on the XOSC32K clock.
#[inline]
pub fn has_failed(&self) -> bool {
self.token.has_failed()
}
/// Check whether the XOSC32K has been switched to the safe clock
///
/// Returns `true` if the XOSC32K has been switched to the safe clock.
#[inline]
pub fn is_switched(&self) -> bool {
self.token.is_switched()
}
/// Attempt to switch from the safe clock back to the external clock
///
/// This function will set the switch back bit (`SWBACK`) in the `CFDCTRL`
/// register. Once the hardware has successfully switched back, this bit
/// will be automatically cleared.
///
/// Users can check whether switching back was successful by checking the
/// `STATUS` register with [`Xosc32kCfd::is_switched`].
#[inline]
pub fn switch_back(&mut self) {
self.token.switch_back()
}
/// Disable continuous monitoring of the XOSC32K for clock failure
///
/// Once failure monitoring is disabled, the [`OscUlp32k`] is no longer used
/// as the safe clock, so the [`EnabledOscUlp32k`] counter can be
/// [`Decrement`]ed.
///
/// [`OscUlp32k`]: super::osculp32k::OscUlp32k
/// [`EnabledOscUlp32k`]: super::osculp32k::EnabledOscUlp32k
#[inline]
pub fn disable<S>(mut self, osc_ulp_32k: S) -> (Xosc32kCfdToken, S::Dec)
where
S: Source<Id = OscUlp32kId> + Decrement,
{
self.token.disable();
(self.token, osc_ulp_32k.dec())
}
}
//==============================================================================
// Ids
//==============================================================================
/// Type representing the identity of the [`Xosc1k`] clock
///
/// See the discussion on [`Id` types](super#id-types) for more information.
pub enum Xosc1kId {}
impl Sealed for Xosc1kId {}
/// Type representing the identity of the [`Xosc32k`] clock
///
/// See the discussion on [`Id` types](super#id-types) for more information.
pub enum Xosc32kId {}
impl Sealed for Xosc32kId {}
//==============================================================================
// Xosc1k
//==============================================================================
/// Clock representing the 1 kHz output of the [`Xosc32kBase`] clock
///
/// The XOSC32K peripheral has two possible clock outputs, one at 32 kHz and
/// another at 1 kHz. This structure is represented in the type system as a set
/// of three clocks forming a small clock tree. The [`Xosc1k`] clock is derived
/// from the [`Xosc32kBase`] clock. See the [module-level documentation](super)
/// for details and examples.
pub struct Xosc1k {
token: Xosc1kToken,
}
/// The [`Enabled`] [`Xosc1k`] clock
///
/// As described in the [`clock` module documentation](super), the [`Enabled`]
/// wrapper implements compile-time clock tree safety by tracking the number of
/// clocks consuming the [`Xosc1k`] clock and restricts access to the underlying
/// type to prevent misuse.
///
/// As with [`Enabled`], the default value for `N` is `U0`; if left unspecified,
/// the counter is assumed to be zero.
pub type EnabledXosc1k<N = U0> = Enabled<Xosc1k, N>;
impl Xosc1k {
/// Enable 1 kHz output from the [`Xosc32kBase`] clock
///
/// This will [`Increment`] the [`EnabledXosc32kBase`] counter.
#[inline]
pub fn enable<M, N>(
token: Xosc1kToken,
mut base: EnabledXosc32kBase<M, N>,
) -> (EnabledXosc1k, EnabledXosc32kBase<M, N::Inc>)
where
M: Mode,
N: Increment,
{
base.0.token.enable_1k();
(Enabled::new(Self { token }), base.inc())
}
}
impl EnabledXosc1k {
/// Disable 1 kHz output from the [`Xosc32kBase`] clock
///
/// This will [`Decrement`] the [`EnabledXosc32kBase`] counter.
#[inline]
pub fn disable<M, N>(
self,
mut base: EnabledXosc32kBase<M, N>,
) -> (Xosc1kToken, EnabledXosc32kBase<M, N::Dec>)
where
M: Mode,
N: Decrement,
{
base.0.token.disable_1k();
(self.0.token, base.dec())
}
}
impl<N> Source for EnabledXosc1k<N> {
type Id = Xosc1kId;
#[inline]
fn freq(&self) -> Hertz {
Hertz(1024)
}
}
//==============================================================================
// Xosc32k
//==============================================================================
/// Clock representing the 32 kHz output of the [`Xosc32kBase`] clock
///
/// The XOSC32K peripheral has two possible clock outputs, one at 32 kHz and
/// another at 1 kHz. This structure is represented in the type system as a set
/// of three clocks forming a small clock tree. The [`Xosc32k`] clock is derived
/// from the [`Xosc32kBase`] clock. See the [module-level documentation](super)
/// for details and examples.
pub struct Xosc32k {
token: Xosc32kToken,
}
/// The [`Enabled`] [`Xosc32k`] clock
///
/// As described in the [`clock` module documentation](super), the [`Enabled`]
/// wrapper implements compile-time clock tree safety by tracking the number of
/// clocks consuming the [`Xosc32k`] clock and restricts access to the
/// underlying type to prevent misuse.
///
/// As with [`Enabled`], the default value for `N` is `U0`; if left unspecified,
/// the counter is assumed to be zero.
pub type EnabledXosc32k<N = U0> = Enabled<Xosc32k, N>;
impl Xosc32k {
/// Enable 32 kHz output from the [`Xosc32kBase`] clock
///
/// This will [`Increment`] the [`EnabledXosc32kBase`] counter.
#[inline]
pub fn enable<M, N>(
token: Xosc32kToken,
mut base: EnabledXosc32kBase<M, N>,
) -> (EnabledXosc32k, EnabledXosc32kBase<M, N::Inc>)
where
M: Mode,
N: Increment,
{
base.0.token.enable_32k();
(Enabled::new(Self { token }), base.inc())
}
}
impl EnabledXosc32k {
/// Disable 1 kHz output from the [`Xosc32kBase`] clock
///
/// This will [`Decrement`] the [`EnabledXosc32kBase`] counter.
#[inline]
pub fn disable<M, N>(
self,
mut base: EnabledXosc32kBase<M, N>,
) -> (Xosc32kToken, EnabledXosc32kBase<M, N::Dec>)
where
M: Mode,
N: Decrement,
{
base.0.token.disable_32k();
(self.0.token, base.dec())
}
}
impl<N> Source for EnabledXosc32k<N> {
type Id = Xosc32kId;
#[inline]
fn freq(&self) -> Hertz {
Hertz(32_768)
}
}