1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
//! Use the SERCOM peripheral for I2C communications
//!
//! Configuring an I2C peripheral occurs in three steps. First, you must create
//! a set of [`Pads`] for use by the peripheral. Next, you assemble pieces into
//! a [`Config`] struct. After configuring the peripheral, you then [`enable`]
//! it, yielding a functional [`I2c`] struct.
//! Transactions are performed using the [`i2c`](embedded_hal::blocking::i2c)
//! traits from embedded HAL.
//!
//! # [`Pads`]
//!
//! A [`Sercom`] uses two [`Pin`]s as peripheral [`Pad`]s, but only
//! certain [`Pin`] combinations are acceptable. In particular, all [`Pin`]s
//! must be mapped to the same [`Sercom`], and SDA is always [`Pad0`], while SCL
//! is always [`Pad1`] (see the datasheet). This HAL makes it impossible to use
//! invalid [`Pin`]/[`Pad`] combinations, and the [`Pads`] struct is responsible
//! for enforcing these constraints.
//!
//!
//! A [`Pads`] type takes three or four type parameters, depending on the chip.
//! The first type always specifies the [`Sercom`]. On SAMx5x chips, the second
//! type specifies the `IoSet`. The remaining two, `SDA` and `SCL` represent the
//! SDA and SCL pads respectively. A [`Pad`] is just a [`Pin`] configured in the
//! correct [`PinMode`] that implements [`IsPad`]. The
//! [`bsp_pins!`](crate::bsp_pins) macro can be used to define convenient type
//! aliases for [`Pad`] types.
//!
//! ```no_run
//! use atsamd_hal::gpio::{PA08, PA09, AlternateC};
//! use atsamd_hal::sercom::{Sercom0, i2c};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! type Sda = Pin<PA08, AlternateC>;
//! type Scl = Pin<PA09, AlternateC>;
//!
//! // SAMD11/SAMD21 version
//! type Pads = i2c::Pads<Sercom0, Sda, Scl>;
//! // SAMx5x version
//! type Pads = i2c::Pads<Sercom0, IoSet1, Sda, Scl>;
//! ```
//!
//! Alternatively, you can use the [`PadsFromIds`] alias to define a set of
//! `Pads` in terms of [`PinId`]s instead of [`Pin`]s. This is useful when you
//! don't have [`Pin`] aliases pre-defined.
//!
//! ```no_run
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, i2c};
//!
//! type Pads = i2c::PadsFromIds<Sercom0, PA08, PA09>;
//! ```
//!
//! Instances of [`Pads`] are created using the [`new`](Pads::new) method.
//!
//! On SAMD21 and SAMx5x chips, [`new`](Pads::new) method automatically convert
//! each pin to the correct [`PinMode`]. But for SAMD11 chips, users must
//! manually convert each pin before calling the builder methods. This is a
//! consequence of inherent ambiguities in the SAMD11 SERCOM pad definitions.
//! Specifically, the same [`PinId`] can correspond to two different [`PadNum`]s
//! for the *same* `Sercom`.
//!
//! ```no_run
//! use atsamd_hal::pac::Peripherals;
//! use atsamd_hal::gpio::Pins;
//! use atsamd_hal::sercom::{Sercom0, i2c};
//!
//! let mut peripherals = Peripherals::take().unwrap();
//! let pins = Pins::new(peripherals.PORT);
//! let pads = i2c::Pads::<Sercom0>::new(pins.pa08, pins.pa09);
//! ```
//!
//! # [`Config`]
//!
//! Next, create a [`Config`] struct, which represents the I2C peripheral in
//! its disabled state. A [`Config`] is specified with one type parameters, the
//! [`Pads`] type.
//!
//! Upon creation, the [`Config`] takes ownership of both the [`Pads`] struct
//! and the PAC [`Sercom`] struct. It takes a reference to the PM, so that it
//! can enable the APB clock, and it takes a frequency to indicate the GCLK
//! configuration. Users are responsible for correctly configuring the GCLK.
//!
//! ```no_run
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, i2c};
//!
//! type Pads = i2c::PadsFromIds<Sercom0, PA08, PA09>;
//! type Config = i2c::Config<Pads>;
//!
//! let pm = peripherals.PM;
//! let sercom = peripherals.SERCOM0;
//! // Configure GCLK for 10 MHz
//! let freq = 10.mhz();
//! let config = i2c::Config::new(&pm, sercom, pads, freq);
//! ```
//!
//! The [`Config`] struct can configure the peripheral in one of two ways:
//!
//! * A set of methods is provided to use in a builder pattern: for example
//! [`baud`](Config::baud), [`run_in_standby`](Config::run_in_standby), etc.
//! These methods take `self` and return `Self`.
//! * A set of methods is provided to use as setters: for example
//! [`set_baud`](Config::set_baud),
//! [`set_run_in_standby`](Config::set_run_in_standby), etc. These methods
//! take `&mut self` and return nothing.
//!
//! In any case, the peripheral setup ends with a call to [`enable`], which
//! consumes the [`Config`] and returns an enabled [`I2c`] peripheral.
//!
//! ```no_run
//! let i2c = i2c::Config::new(&pm, sercom, pads, freq)
//! .baud(1.mhz())
//! .enable();
//! ```
//!
//! Alternatively,
//!
//! ```no_run
//! let i2c = i2c::Config::new(&mclk, sercom, pads, freq);
//! i2c.set_baud(1.mhz());
//! let i2c = i2c.enable();
//! ```
//!
//! ## Reading the current configuration
//!
//! It is possible to read the current configuration by using the getter methods
//! provided: for example [`get_baud`](Config::get_baud),
//! [`get_run_in_standby`](Config::get_run_in_standby), etc.
//!
//! # [`I2c`]
//!
//! [`I2c`] structs can only be created from a [`Config`]. They have one type
//! parameter, representing the underlying [`Config`].
//!
//! Only the [`I2c`] struct can actually perform
//! transactions. To do so, use the embedded HAL traits, like
//! [`i2c::WriteRead`], [`i2c::Read`] and [`i2c::Write`].
//!
//! ```
//! use embedded_hal::blocking::i2c::Write;
//!
//! i2c.write(0x54, 0x0fe)
//! ```
//!
//! # Reading the current configuration
//!
//! The `AsRef<Config<P>>` trait is implemented for `I2c<Config<P>>`.
//! This means you can use the `get_` methods implemented for `Config`, since
//! they take an `&self` argument.
//!
//! ```no_run
//! // Assume i2c is a I2c<C<P>>
//! let baud = i2c.as_ref().get_baud();
//! ```
//!
//! # Reconfiguring
//!
//! The [`reconfigure`] method gives out an `&mut Config` reference, which can
//! then use the `set_*` methods.
//!
//! ```no_run
//! use atsamd_hal::sercom::i2c::I2c;
//! use atsamd_hal::time::*;
//!
//! // Assume config is a valid Duplex I2C Config struct
//! let i2c = config.enable();
//!
//! // Send/receive data...
//!
//! // Reconfigure I2C peripheral
//! i2c.reconfigure(|c| c.set_run_in_standby(false));
//!
//! // Disable I2C peripheral
//! let config = i2c.disable();
//! ```
//!
//! # Non-supported features
//!
//! * Slave mode is not supported at this time.
//! * High-speed mode is not supported.
//! * 4-wire mode is not supported.
//! * 32-bit extension mode is not supported (SAMx5x). If you need to transfer
//! slices, consider using the DMA methods instead. The `dma` Cargo feature
//! must be enabled.
//!
//! [`enable`]: Config::enable
//! [`disable`]: I2c::disable
//! [`reconfigure`]: I2c::reconfigure
//! [`bsp_pins`]: crate::bsp_pins
//! [`Sercom`]: crate::sercom::Sercom
//! [`Pad0`]: crate::sercom::pad::Pad0
//! [`Pad1`]: crate::sercom::pad::Pad1
//! [`Pad`]: crate::sercom::pad::Pad
//! [`IsPad`]: crate::sercom::pad::IsPad
//! [`PadNum`]: crate::sercom::pad::PadNum
//! [`Pin`]: crate::gpio::pin::Pin
//! [`PinId`]: crate::gpio::pin::PinId
//! [`PinMode`]: crate::gpio::pin::PinMode
//! [`i2c::Write`]: embedded_hal::blocking::i2c::Write
//! [`i2c::Read`]: embedded_hal::blocking::i2c::Read
//! [`i2c::WriteRead`]: embedded_hal::blocking::i2c::WriteRead
#![cfg_attr(
feature = "dma",
doc = "
# Using I2C with DMA
This HAL includes support for DMA-enabled I2C transfers. [`I2c`]
implements the DMAC [`Buffer`]
trait. The provided [`send_with_dma`] and
[`receive_with_dma`] build and begin a
[`dmac::Transfer`], thus starting the I2C
in a non-blocking way.
Note that the [`init_dma_transfer`] method should be called immediately before
starting a DMA transfer with I2C. This will check that the bus is in a correct
state before starting the transfer, and providing a token type to pass to the
[`send_with_dma`] and [`receive_with_dma`] methods.
Optionally, interrupts can be enabled on the provided
[`Channel`]. Note that the `dma` feature must
be enabled. Please refer to the [`dmac`](crate::dmac) module-level
documentation for more information.
```no_run
use atsamd_hal::dmac::channel::{AnyChannel, Ready};
use atsand_hal::sercom::i2c::{I2c, AnyConfig, Error};
fn i2c_send_with_dma<A: AnyConfig, C: AnyChannel<Status = Ready>>(i2c: I2c<A>, channel: C) -> Result<(), Error>{
// Create data to send. Note that it must be `'static`.
let buffer: [u8; 50] = [0xff; 50];
// Initialize the bus and check for errors
let token = i2c.init_dma_transfer()?;
let transfer = i2c.send_with_dma(0x54, token, buffer, channel0, |_| {})
// Wait for transfers to complete and reclaim resources
let (chan0, buffer, i2c) = transfer.wait();
// Check for errors that may have occured during the transfer.
i2c.read_status().check_bus_error()?;
}
```
[`Buffer`]: crate::dmac::transfer::Buffer
[`init_dma_transfer`]: I2c::init_dma_transfer
[`send_with_dma`]: I2c::send_with_dma
[`receive_with_dma`]: I2c::receive_with_dma
[`dmac::Transfer`]: crate::dmac::Transfer
[`Channel`]: crate::dmac::channel::Channel
[`dmac`]: crate::dmac
"
)]
#[cfg(any(feature = "samd11", feature = "samd21"))]
#[path = "i2c/pads_thumbv6m.rs"]
mod pads;
#[cfg(feature = "min-samd51g")]
#[path = "i2c/pads_thumbv7em.rs"]
mod pads;
pub use pads::*;
mod reg;
use reg::Registers;
mod flags;
pub use flags::*;
mod config;
pub use config::*;
mod impl_ehal;
/// Word size for an I2C message
pub type Word = u8;
/// Inactive timeout configuration
#[repr(u8)]
#[derive(Clone, Copy)]
pub enum InactiveTimeout {
/// Disabled
Disabled = 0x0,
/// 5-6 SCL cycles (50-60 us @ 100 kHz)
Us55 = 0x1,
///10-11 SCL cycles (100-110 us @ 100 kHz)
Us105 = 0x2,
/// 20-21 SCL cycles (200-210 us @ 100 kHz)
Us205 = 0x3,
}
/// Abstraction over a I2C peripheral, allowing to perform I2C transactions.
pub struct I2c<C: AnyConfig> {
config: C,
}
impl<C: AnyConfig> I2c<C> {
/// Obtain a pointer to the `DATA` register. Necessary for DMA transfers.
#[inline]
pub fn data_ptr(&self) -> *mut Word {
self.config.as_ref().registers.data_ptr()
}
/// Read the interrupt flags
#[inline]
pub fn read_flags(&self) -> Flags {
self.config.as_ref().registers.read_flags()
}
/// Clear interrupt status flags
#[inline]
pub fn clear_flags(&mut self, flags: Flags) {
self.config.as_mut().registers.clear_flags(flags);
}
/// Enable interrupts for the specified flags.
#[inline]
pub fn enable_interrupts(&mut self, flags: Flags) {
self.config.as_mut().registers.enable_interrupts(flags);
}
/// Disable interrupts for the specified flags.
#[inline]
pub fn disable_interrupts(&mut self, flags: Flags) {
self.config.as_mut().registers.disable_interrupts(flags);
}
/// Read the status flags
#[inline]
pub fn read_status(&self) -> Status {
self.config.as_ref().registers.read_status()
}
/// Clear the status flags
#[inline]
pub fn clear_status(&mut self, status: Status) {
self.config.as_mut().registers.clear_status(status);
}
#[cfg(feature = "dma")]
#[inline]
pub(super) fn start_dma_write(&mut self, address: u8, xfer_len: u8) {
self.config
.as_mut()
.registers
.start_dma_write(address, xfer_len)
}
#[cfg(feature = "dma")]
#[inline]
pub(super) fn start_dma_read(&mut self, address: u8, xfer_len: u8) {
self.config
.as_mut()
.registers
.start_dma_read(address, xfer_len)
}
#[cfg(feature = "dma")]
#[inline]
pub(super) fn check_bus_status(&self) -> Result<(), Error> {
self.config.as_ref().registers.check_bus_status()
}
#[inline]
fn do_write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
self.config.as_mut().registers.do_write(addr, bytes)
}
#[inline]
fn do_read(&mut self, addr: u8, bytes: &mut [u8]) -> Result<(), Error> {
self.config.as_mut().registers.do_read(addr, bytes)
}
#[inline]
fn do_write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
self.config
.as_mut()
.registers
.do_write_read(addr, bytes, buffer)
}
#[inline]
fn cmd_stop(&mut self) {
self.config.as_mut().registers.cmd_stop()
}
/// Reconfigure the I2C peripheral.
///
/// Calling this method will temporarily disable the SERCOM peripheral, as
/// some registers are enable-protected. This may interrupt any ongoing
/// transactions.
///
/// ```
/// use atsamd_hal::sercom::i2c::I2c;
/// i2c.reconfigure(|c| c.set_run_in_standby(false));
/// ```
#[inline]
pub fn reconfigure<F>(&mut self, update: F)
where
F: FnOnce(&mut SpecificConfig<C>),
{
self.config.as_mut().registers.enable_peripheral(false);
update(self.config.as_mut());
self.config.as_mut().registers.enable_peripheral(true);
}
/// Disable the I2C peripheral and return the underlying [`Config`]
#[inline]
pub fn disable(self) -> C {
let mut config = self.config;
config.as_mut().registers.disable();
config
}
}
impl<P: PadSet> AsRef<Config<P>> for I2c<Config<P>> {
#[inline]
fn as_ref(&self) -> &Config<P> {
self.config.as_ref()
}
}