1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
//! Use the SERCOM peripheral for UART communications
//!
//! Configuring an UART peripheral occurs in three steps. First, you must create
//! a set of [`Pads`] for use by the peripheral. Next, you assemble pieces into
//! a [`Config`] struct. After configuring the peripheral, you then [`enable`]
//! it, yielding a functional [`Uart`] struct.
//! Transactions are performed using the [`serial`](embedded_hal::serial) traits
//! from embedded HAL.
//!
//! # [`Pads`]
//!
//! A [`Sercom`] can use up to four [`Pin`]s as peripheral [`Pad`]s, but only
//! certain [`Pin`] combinations are acceptable. In particular, all [`Pin`]s
//! must be mapped to the same `Sercom` (see the datasheet). This HAL makes it
//! impossible to use invalid [`Pin`]/[`Pad`] combinations, and the [`Pads`]
//! struct is responsible for enforcing these constraints.
//!
//!
//! A `Pads` type takes five or six type parameters, depending on the chip.The
//! first type always specifies the `Sercom`. On SAMx5x chips, the second type
//! specifies the `IoSet`. The remaining four, `DI`, `DO`, `CK` and `SS`,
//! represent the Data In, Data Out, Sclk and SS pads respectively. Each of the
//! remaining type parameters is an [`OptionalPad`] and defaults to [`NoneT`]. A
//! [`Pad`] is just a [`Pin`] configured in the correct [`PinMode`] that
//! implements [`IsPad`]. The [`bsp_pins!`](crate::bsp_pins) macro can be
//! used to define convenient type aliases for [`Pad`] types.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09, AlternateC};
//! use atsamd_hal::sercom::{Sercom0, uart};
//! use atsamd_hal::typelevel::NoneT;
//!
//! type Rx = Pin<PA08, AlternateC>;
//! type Tx = Pin<PA09, AlternateC>;
//! type Pads = uart::Pads<Sercom0, Rx, Tx>;
//! ```
#![cfg_attr(
not(feature = "samd11"),
doc = "
Alternatively, you can use the [`PadsFromIds`] alias to define a set of
`Pads` in terms of [`PinId`]s instead of `Pin`s. This is useful when you
don't have [`Pin`] aliases pre-defined.
```
use atsamd_hal::gpio::{PA08, PA09};
use atsamd_hal::sercom::{Sercom0, uart};
type Pads = uart::PadsFromIds<Sercom0, PA08, PA09>;
```
"
)]
//!
//! Instances of [`Pads`] are created using the builder pattern. Start by
//! creating an empty set of [`Pads`] using [`Default`]. Then pass each
//! respective [`Pin`] using the corresponding methods.
//!
//! On SAMD21 and SAMx5x chips, the builder methods automatically convert each
//! pin to the correct [`PinMode`]. But for SAMD11 chips, users must manually
//! convert each pin before calling the builder methods. This is a consequence
//! of inherent ambiguities in the SAMD11 SERCOM pad definitions. Specifically,
//! the same [`PinId`] can correspond to two different [`PadNum`]s for the
//! *same* `Sercom`.
//!
//! ```
//! use atsamd_hal::pac::Peripherals;
//! use atsamd_hal::gpio::Pins;
//! use atsamd_hal::sercom::{Sercom0, uart};
//!
//! let mut peripherals = Peripherals::take().unwrap();
//! let pins = Pins::new(peripherals.PORT);
//! let pads = uart::Pads::<Sercom0>::default()
//! .rx(pins.pa09)
//! .tx(pins.pa08);
//! ```
//!
//! To be accepted as [`ValidPads`], a set of [`Pads`] must do two things:
//! - Specify a type for at least one of `RX` or `TX`
//! - Satisfy the `RxpoTxpo` trait (SAMD11/SAMD21), or the `Rxpo` and `Txpo`
//! traits (SAMx5x)
//!
//! # [`Config`]
//!
//! Next, create a [`Config`] struct, which represents the UART peripheral in
//! its disabled state. A [`Config`] is specified with two type parameters: the
//! [`Pads`] type; and a [`CharSize`], which defaults to [`EightBit`].
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, uart};
//! use atsamd_hal::sercom::uart::{NineBit};
//! use atsamd_hal::typelevel::NoneT;
//!
//! type Pads = uart::PadsFromIds<Sercom0, PA08, PA09>;
//! type Config = uart::Config<Pads, NineBit>;
//! ```
//!
//! Upon creation, the [`Config`] takes ownership of both the [`Pads`] struct
//! and the PAC [`Sercom`] struct. It takes a reference to the PM, so that it
//! can enable the APB clock, and it takes a frequency to indicate the GCLK
//! configuration. Users are responsible for correctly configuring the GCLK.
//!
//! ```
//! use atsamd_hal::time::U32Ext;
//!
//! let pm = peripherals.PM;
//! let sercom = peripherals.SERCOM0;
//! // Configure GCLK for 10 MHz
//! let freq = 10.mhz();
//! let config = uart::Config::new(&pm, sercom, pads, freq);
//! ```
//!
//! The [`Config`] struct can configure the peripheral in one of two ways:
//!
//! * A set of methods is provided to use in a builder pattern: for example
//! [`baud`](Config::baud), [`stop_bits`](Config::stop_bits), etc. These
//! methods take `self` and return `Self`.
//! * A set of methods is provided to use as setters: for example
//! [`set_baud`](Config::set_baud), [`set_stop_bits`](Config::set_stop_bits),
//! etc. These methods take `&mut self` and return nothing.
//!
//! In any case, the peripheral setup ends with a call to [`enable`], which
//! consumes the [`Config`] and returns an enabled [`Uart`] peripheral.
//!
//! ```
//! use atsamd_hal::sercom::uart::{StopBits, NineBit, BitOrder, BaudMode, Oversampling};
//!
//! let uart = uart::Config::new(&mclk, sercom, pads, freq)
//! .baud(1.mhz(), BaudMode::Arithmetic(Oversampling::Bits16))
//! .char_size::<NineBit>()
//! .bit_order(BitOrder::LsbFirst)
//! .stop_bits(StopBits::TwoBits)
//! .enable();
//! ```
//!
//! Alternatively,
//!
//! ```
//! use atsamd_hal::sercom::uart::{StopBits, NineBit, BitOrder, BaudMode, Oversampling};
//!
//! let uart = uart::Config::new(&mclk, sercom, pads, freq);
//! uart.set_baud(1.mhz(), BaudMode::Arithmetic(Oversampling::Bits16));
//! uart.set_char_size::<NineBit>();
//! uart.set_bit_order(BitOrder::LsbFirst);
//! uart.set_stop_bits(StopBits::TwoBits);
//! let uart = uart.enable();
//! ```
//!
//!
//! To be accepted as a [`ValidConfig`], the [`Config`] must have at least one
//! of `Rx` or `Tx` pads.
//!
//! ## [`CharSize`]
//!
//! The UART peripheral can be configured to use different character sizes. By
//! default, a [`Config`] is configured with an [`EightBit`] character size.
//! This can be changed through the [`char_size`](Config::char_size) method.
//! Changing the character normally also changes the [`Config`]'s type.
//! Alternatively, you can also use a [`DynCharSize`] through the
//! [`dyn_char_size`](Config::dyn_char_size) method. This enables you to
//! dynamically change the character size on the fly through the
//! [`set_dyn_char_size`](Config::set_dyn_char_size) method when calling
//! [`reconfigure`](Uart::reconfigure).
//!
//! ## Reading the current configuration
//!
//! It is possible to read the current configuration by using the getter methods
//! provided: for example [`get_baud`](Config::get_baud),
//! [`get_stop_bits`](Config::get_stop_bits), etc.
//!
//! # [`Uart`] and capabilities
//!
//! [`Uart`] structs can only be created from a [`Config`]. They have two type
//! parameters: the first one represents the underlying [`Config`], while the
//! second represents the [`Uart`]'s capabilities. The second type parameter can
//! be one of:
//!
//! * [`Rx`] or [`RxDuplex`]: Can perform receive transactions
//! * [`Tx`] or [`TxDuplex`]: Can perform transmit transactions
//! * [`Duplex`]: UART configured as duplex that can perform receive and
//! transmit transactions. Additionally, the [`split`] method can be
//! called to return a `Uart<C, RxDuplex>, Uart<C, TxDuplex>)` tuple. See the
//! [Splitting](self#Splitting) section for more information.
//!
//! The nature of the underlying [`Pads`] contained inside [`Config`] determines
//! the type returned by a call to [`enable`]. If the pads only have a `TX` pin
//! specified, then [`enable`] will return a `Uart<C, Tx>`. Similarly, If the
//! pads only have a `RX` pin specified, then [`enable`] will return a `Uart<C,
//! Rx>`. Finally, if both `RX` and `TX` pins are specified, then [`enable`]
//! will return a `Uart<C, Duplex>`, which can be further split into a `Uart<C,
//! RxDuplex>` and a `Uart<C, TxDuplex>`.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, uart};
//! use atsamd_hal::sercom::uart::NineBit;
//! use atsamd_hal::typelevel::NoneT;
//!
//! // Assuming SAMD21 or SAMx5x
//! type Pads = uart::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! type Config = uart::Config<Pads, NineBit>;
//! type UartRx = uart::Uart<Config, RxDuplex>;
//! type UartTx = uart::UartTx<Config, RxDuples>;
//! ```
//!
//! Only the [`Uart`] struct can actually perform
//! transactions. To do so, use the embedded HAL traits, like
//! [`serial::Read`] and [`serial::Write`].
//!
//! ```
//! use nb::block;
//! use embedded_hal::serial::Write;
//!
//! block!(uart_tx.write(0x0fe));
//! ```
//!
//! # UART flow control (CTS/RTS)
//!
//! This module supports CTS and RTS pins.
//!
//! The `RTS` pin is a fully hardware-controlled output pin that gets deasserted
//! when:
//!
//! * The USART receiver is disabled;
//! * The USART's RX buffer is full.
//!
//! The `CTS` pin is an input pin that provides an interrupt when a change
//! (rising or falling edge) is detected on the corresponding Pad. This
//! interrupt, `CTSIC`, can be enabled with the
//! [`enable_ctsic`](Uart::enable_ctsic) method only when the corresponding
//! [`Config`] has a `CTS` pad specified. The
//! [`disable_ctsic`](Uart::disable_ctsic) and
//! [`clear_ctsic`](Uart::clear_ctsic) methods are also available under the same
//! conditions. [This application note](https://www.silabs.com/documents/public/application-notes/an0059.0-uart-flow-control.pdf)
//! provides more information about UART hardware flow control.
//!
//! # Splitting
//!
//! A `Uart<C, Duplex>` can be split into its [`RxDuplex`] and [`TxDuplex`]
//! constituents:
//!
//! ```
//! use atsamd_hal::sercom::uart::Uart;
//! // Assume uart is a Uart<C, Duplex>
//! let (rx, tx) = uart.split();
//! ```
//!
//! # Joining
//!
//! When a `Uart<C, Duplex>` has been split into its [`RxDuplex`] and
//! [`TxDuplex`] parts, these parts can be joined back into a `Uart<C, Duplex>`
//! by calling the [`join`] function for `Uart<C, Duplex>`. It takes a `Uart<C,
//! RxDuplex>` and a `Uart<C, TxDuplex>` and moves them into a full [`Duplex`]
//! [`Uart`].
//!
//! ```
//! use atsamd_hal::sercom::uart::Uart;
//!
//! // Assume rx is a Uart<C, RxDuplex> and tx is a Uart<C, TxDuplex>
//! let uart = Uart::join(rx, tx);
//! // uart is now a Uart<C, Duplex>
//! ```
//!
//! The [`AsMut<Uart<C, Duplex>>`] trait is also implemented for `(&mut Uart<C,
//! RxDuplex>, &mut Uart<C, TxDuplex>)`. This is useful if you need an `&mut
//! Uart<C, Duplex>` but you only have a pair of `&mut Uart<C, RxDuplex>` and
//! `&mut Uart<C, TxDuplex>`. This can be leveraged to use the [`reconfigure`]
//! method when all you have is a pair of mutable references to the [`RxDuplex`]
//! and [`TxDuplex`] halves.
//!
//! ```
//! use atsamd_hal::sercom::uart::Uart;
//! use atsamd_hal::time::*;
//!
//! // Assume rx is a Uart<C, RxDuplex> and tx is a Uart<C, TxDuplex>
//!
//! // Reconfigure peripheral from mutable references to RxDuplex
//! // and TxDuplex halves
//! (&mut rx, &mut tx).as_mut().reconfigure(|c| c.set_run_in_standby(false));
//! ```
//!
//! # Reading the current configuration
//!
//! The `AsRef<Config<P, C>>` trait is implemented for `Uart<Config<P, C>, D>`.
//! This means you can use the `get_` methods implemented for `Config`, since
//! they take an `&self` argument.
//!
//! ```
//! // Assume uart is a Uart<C, D>
//! let (baud, baud_mode) = uart.as_ref().get_baud();
//! ```
//!
//! # Disabling and reconfiguring
//!
//! Some methods, such as [`disable`] and [`reconfigure`], need to operate on
//! all parts of a UART at once. In practice, this means that these methods
//! operate on the type that was returned by [`enable`]. This can be `Uart<C,
//! Rx>`, `Uart<C, Tx>`, or `Uart<C, Duplex>`, depending on how the
//! peripheral was configured.
//!
//! The [`reconfigure`] method gives out an `&mut Config` reference, which can
//! then use the `set_*` methods.
//!
//! ```
//! use atsamd_hal::sercom::uart::Uart;
//! use atsamd_hal::time::*;
//!
//! // Assume config is a valid Duplex UART Config struct
//! let (rx, tx)= config.enable().split();
//!
//! // Send/receive data with tx/rx halves...
//!
//! // If the UART peripheral is configured in Duplex mode,
//! // the two constituting halves need to be joined back into
//! // a Uart<C, Duplex> before calling disable()
//! let uart = Uart::join(rx, tx);
//!
//! // Reconfigure UART peripheral
//! uart.reconfigure(|c| c.set_run_in_standby(false));
//!
//! // Disable UART peripheral
//! let config = uart.disable();
//! ```
//!
//! # Non-supported advanced features
//!
//! * Synchronous mode (USART) is not supported
//! * LIN mode is not supported (SAMx5x)
//! * 32-bit extension mode is not supported (SAMx5x). If you need to transfer
//! slices, consider using the DMA methods instead. The `dma` Cargo feature
//! must be enabled.
//!
//! [`enable`]: Config::enable
//! [`disable`]: Uart::disable
//! [`reconfigure`]: Uart::reconfigure
//! [`bsp_pins`]: crate::bsp_pins
//! [`Pin`]: crate::gpio::pin::Pin
//! [`Pin`]: crate::gpio::pin::Pin
//! [`PinId`]: crate::gpio::pin::PinId
//! [`PinMode`]: crate::gpio::pin::PinMode
//! [`split`]: Uart::split
//! [`join`]: Uart::join
//! [`NoneT`]: crate::typelevel::NoneT
//! [`serial::Write`]: embedded_hal::serial::Write
//! [`serial::Read`]: embedded_hal::serial::Read
#![cfg_attr(
feature = "dma",
doc = "
# Using UART with DMA
This HAL includes support for DMA-enabled UART transfers. [`Uart`]
implements the DMAC [`Buffer`]
trait. The provided [`send_with_dma`] and
[`receive_with_dma`] build and begin a
[`dmac::Transfer`], thus starting the UART
in a non-blocking way. Optionally, interrupts can be enabled on the provided
[`Channel`]. Note that the `dma` feature must
be enabled. Please refer to the [`dmac`](crate::dmac) module-level
documentation for more information.
```
// Assume channel0 and channel1 are configured `dmac::Channel`s,
// rx is a Uart<C, RxDuplex>, and tx is a Uart<C, TxDuplex>.
/// Create data to send
let tx_buffer: [u8; 50] = [0xff; 50];
let rx_buffer: [u8; 100] = [0xab; 100];
// Launch transmit transfer
let tx_dma = tx.send_with_dma(&mut tx_buffer, channel0, |_| {});
// Launch receive transfer
let rx_dma = rx.receive_with_dma(&mut rx_buffer, channel1, |_| {});
// Wait for transfers to complete and reclaim resources
let (chan0, tx_buffer, tx) = tx_dma.wait();
let (chan1, rx, rx_buffer) = rx_dma.wait();
```
[`Buffer`]: crate::dmac::transfer::Buffer
[`send_with_dma`]: Uart::send_with_dma
[`receive_with_dma`]: Uart::receive_with_dma
[`dmac::Transfer`]: crate::dmac::Transfer
[`Channel`]: crate::dmac::channel::Channel
[`dmac`]: crate::dmac
"
)]
#[cfg(any(feature = "samd11", feature = "samd21"))]
#[path = "uart/pads_thumbv6m.rs"]
mod pads;
#[cfg(feature = "min-samd51g")]
#[path = "uart/pads_thumbv7em.rs"]
mod pads;
pub use pads::*;
mod reg;
use reg::Registers;
mod charsize;
pub use charsize::*;
mod flags;
pub use flags::*;
mod config;
pub use config::*;
pub mod impl_ehal;
use crate::{sercom::*, typelevel::Sealed};
use core::{convert::TryInto, marker::PhantomData};
use num_traits::AsPrimitive;
/// Size of the SERCOM's `DATA` register
#[cfg(any(feature = "samd11", feature = "samd21"))]
pub type DataReg = u16;
/// Size of the SERCOM's `DATA` register
#[cfg(any(feature = "min-samd51g"))]
pub type DataReg = u32;
//=============================================================================
// Stop bits, parity, baud rate, bit order
//=============================================================================
/// Number of stop bits in a UART frame
#[derive(Debug, Clone, Copy)]
pub enum StopBits {
/// 1 stop bit
OneBit,
/// 2 stop bits
TwoBits,
}
/// Parity setting of a UART frame
#[repr(u8)]
#[derive(Debug, Clone, Copy)]
pub enum Parity {
/// No parity
None,
/// Even parity
Even,
/// Odd parity
Odd,
}
/// Bit order of a UART frame
#[repr(u8)]
#[derive(Debug, Clone, Copy)]
pub enum BitOrder {
/// MSB-first
MsbFirst,
/// LSB-first
LsbFirst,
}
/// Baudrate oversampling values
///
/// *NOTE* 3x oversampling has been intentionally left out
#[repr(u8)]
#[derive(Debug, Clone, Copy)]
pub enum Oversampling {
// 3 samples per bit
// Bits3 = 3,
/// 8 samples per bit
Bits8 = 8,
/// 16 samples per bit
Bits16 = 16,
}
/// Baudrate calculation in asynchronous mode
#[derive(Debug, Clone, Copy)]
pub enum BaudMode {
/// Asynchronous arithmetic baud calculation
Arithmetic(Oversampling),
/// Asynchronous fractional baud calculation
Fractional(Oversampling),
}
//=============================================================================
// Capability
//=============================================================================
/// Type-level `enum` representing the capabilities of a UART peripheral
pub trait Capability: Sealed {
/// Available interrupt flags for the specified capability
const FLAG_MASK: u8;
/// Available status flags for the specified capability
const STATUS_MASK: u16;
/// Enable `CTRLA.RXEN` field?
const RXEN: bool;
/// Enable `CTRLA.TXEN` field?
const TXEN: bool;
}
/// Type-level enum representing a UART that can transmit
pub trait Transmit: Capability {}
/// Type-level enum representing a UART that can receive
pub trait Receive: Capability {}
/// Type-level enum representing a UART that has transmit or receive
/// capability, but not both
pub trait Simplex: Capability {}
/// Marker type representing a UART that has both transmit and receive
/// capability
pub enum Duplex {}
impl Sealed for Duplex {}
impl Capability for Duplex {
// All flags are valid for a Duplex UART
const FLAG_MASK: u8 = DUPLEX_FLAG_MASK;
// All status flags are valid for a Duplex UART
const STATUS_MASK: u16 = DUPLEX_STATUS_MASK;
const RXEN: bool = true;
const TXEN: bool = true;
}
impl Receive for Duplex {}
impl Transmit for Duplex {}
/// Marker type representing a UART that can only receive
pub enum Rx {}
impl Sealed for Rx {}
impl Capability for Rx {
// Available interrupt flags for a RX half-UART
const FLAG_MASK: u8 = RX_FLAG_MASK;
// Available status flags for a RX half-UART
const STATUS_MASK: u16 = RX_STATUS_MASK;
const RXEN: bool = true;
const TXEN: bool = false;
}
impl Receive for Rx {}
impl Simplex for Rx {}
/// Marker type representing a UART that can only transmit
pub enum Tx {}
impl Sealed for Tx {}
impl Capability for Tx {
// Available interrupt flags for a TX half-UART
const FLAG_MASK: u8 = TX_FLAG_MASK;
// There are no settable/clearable status flags for TX half-UARTs
const STATUS_MASK: u16 = 0;
const RXEN: bool = false;
const TXEN: bool = true;
}
impl Transmit for Tx {}
impl Simplex for Tx {}
/// Marker type representing the Rx half of a [`Duplex`] UART
pub enum RxDuplex {}
impl Sealed for RxDuplex {}
impl Capability for RxDuplex {
// Available interrupt flags for a RX half-UART
const FLAG_MASK: u8 = RX_FLAG_MASK;
// Available status flags for a RX half-UART
const STATUS_MASK: u16 = RX_STATUS_MASK;
const RXEN: bool = true;
const TXEN: bool = false;
}
impl Receive for RxDuplex {}
/// Marker type representing a the Tx half of a [`Duplex`] UART
pub enum TxDuplex {}
impl Sealed for TxDuplex {}
impl Capability for TxDuplex {
// Available interrupt flags for a TX half-UART
const FLAG_MASK: u8 = TX_FLAG_MASK;
// There are no settable/clearable status flags for TX half-UARTs
const STATUS_MASK: u16 = 0;
const RXEN: bool = false;
const TXEN: bool = true;
}
impl Transmit for TxDuplex {}
//=============================================================================
// Uart
//=============================================================================
/// Abstraction over a UART peripheral, allowing to perform UART transactions.
/// The second type parameter, `D`, denotes what the struct's [`Capability`] is.
///
/// * [`Rx`] or [`RxDuplex`]: Can perform receive transactions
/// * [`Tx`] or [`TxDuplex`]: Can perform transmit transactions
/// * [`Duplex`]: Can perform receive and transmit transactions. Additionally,
/// you can call [`split`](Uart::split) to return a `(Uart<C, RxDuplex>,
/// Uart<C, TxDuplex>)` tuple.
pub struct Uart<C, D>
where
C: ValidConfig,
D: Capability,
{
config: C,
capability: PhantomData<D>,
}
impl<C, D> Uart<C, D>
where
C: ValidConfig,
D: Capability,
{
/// Obtain a pointer to the `DATA` register. Necessary for DMA transfers.
#[cfg(feature = "dma")]
#[inline]
pub(crate) fn data_ptr(&self) -> *mut C::Word {
self.config.as_ref().registers.data_ptr()
}
/// Helper method to remove the interrupt flags not pertinent to `Self`'s
/// `Capability`
#[inline]
fn capability_flags(flags: Flags) -> Flags {
flags & unsafe { Flags::from_bits_unchecked(D::FLAG_MASK) }
}
/// Helper method to remove the status flags not pertinent to `Self`'s
/// `Capability`
#[inline]
fn capability_status(status: Status) -> Status {
status & unsafe { Status::from_bits_unchecked(D::STATUS_MASK) }
}
/// Read the interrupt flags
#[inline]
pub fn read_flags(&self) -> Flags {
self.config.as_ref().registers.read_flags()
}
/// Clear interrupt status flags
///
/// Setting the `ERROR`, `RXBRK`, `CTSIC`, `RXS`, or `TXC` flag will clear
/// the interrupts. This function has no effect on the `DRE` or
/// `RXC` flags.
///
/// Note that only the flags pertinent to `Self`'s [`Capability`]
/// will be cleared. The other flags will be **SILENTLY IGNORED**.
///
/// * Available flags for [`Receive`] capability: `RXC`, `RXS`, `RXBRK` and
/// `ERROR`
/// * Available flags for [`Transmit`] capability: `DRE` and `TXC`.
/// **Note**: The `CTSIC` flag can only be cleared if a `CTS` Pad was
/// specified in the [`Config`] via the [`clear_ctsic`](Uart::clear_ctsic)
/// method.
/// * Since [`Duplex`] [`Uart`]s are [`Receive`] + [`Transmit`] they have
/// all flags available.
///
/// **Warning:** The implementation of of
/// [`Write::flush`](embedded_hal::serial::Write::flush) waits on and
/// clears the `TXC` flag. Manually clearing this flag could cause it to
/// hang indefinitely.
#[inline]
pub fn clear_flags(&mut self, flags: Flags) {
// Remove flags not pertinent to Self's Capability
let flags = Self::capability_flags(flags);
self.config.as_mut().registers.clear_flags(flags);
}
/// Enable interrupts for the specified flags.
///
/// Note that only the flags pertinent to `Self`'s [`Capability`]
/// will be cleared. The other flags will be **SILENTLY IGNORED**.
///
/// * Available flags for [`Receive`] capability: `RXC`, `RXS`, `RXBRK` and
/// `ERROR`
/// * Available flags for [`Transmit`] capability: `DRE` and `TXC`.
/// **Note**: The `CTSIC` interrupt can only be enabled if a `CTS` Pad was
/// specified in the [`Config`] via the
/// [`enable_ctsic`](Uart::enable_ctsic) method.
/// * Since [`Duplex`] [`Uart`]s are [`Receive`] + [`Transmit`] they have
/// all flags available.
#[inline]
pub fn enable_interrupts(&mut self, flags: Flags) {
// Remove flags not pertinent to Self's Capability
let flags = Self::capability_flags(flags);
self.config.as_mut().registers.enable_interrupts(flags);
}
/// Disable interrupts for the specified flags.
///
/// Note that only the flags pertinent to `Self`'s [`Capability`]
/// will be cleared. The other flags will be **SILENTLY IGNORED**
///
/// * Available flags for [`Receive`] capability: `RXC`, `RXS`, `RXBRK` and
/// `ERROR`
/// * Available flags for [`Transmit`] capability: `DRE` and `TXC`.
/// **Note**: The `CTSIC` interrupt can only be disabled if a `CTS` Pad
/// was specified in the [`Config`] via the
/// [`disable_ctsic`](Uart::disable_ctsic) method.
/// * Since [`Duplex`] [`Uart`]s are [`Receive`] + [`Transmit`] they have
/// all flags available.
#[inline]
pub fn disable_interrupts(&mut self, flags: Flags) {
// Remove flags not pertinent to Self's Capability
let flags = Self::capability_flags(flags);
self.config.as_mut().registers.disable_interrupts(flags);
}
/// Read the status flags
#[inline]
pub fn read_status(&self) -> Status {
self.config.as_ref().registers.read_status()
}
/// Clear the status flags
///
/// Note that only the status flags pertinent to `Self`'s [`Capability`]
/// will be cleared. The other stattus flags will be **SILENTLY IGNORED**.
///
/// * Available status flags for [`Receive`] capability: `PERR`, `FERR`,
/// `BUFOVF`, `ISF` and `COLL`
/// * [`Transmit`]-only [`Uart`]s have no clearable status flags.
/// * Since [`Duplex`] [`Uart`]s are [`Receive`] + [`Transmit`] they have
/// all status flags available.
#[inline]
pub fn clear_status(&mut self, status: Status) {
// Remove status flags not pertinent to Self's Capability
let flags = Self::capability_status(status);
self.config.as_mut().registers.clear_status(flags);
}
#[inline]
pub(super) fn _reconfigure<F>(&mut self, update: F)
where
F: FnOnce(&mut SpecificConfig<C>),
{
self.config.as_mut().registers.enable_peripheral(false);
update(self.config.as_mut());
self.config.as_mut().registers.enable_peripheral(true);
}
}
impl<C, D> Uart<C, D>
where
C: ValidConfig,
<C::Pads as PadSet>::Cts: SomePad,
D: Transmit,
{
/// Clear the `CTSIC` interrupt flag
#[inline]
pub fn clear_ctsic(&mut self) {
let bit = CTSIC;
self.config
.as_mut()
.registers
.clear_flags(unsafe { Flags::from_bits_unchecked(bit) });
}
/// Enable the `CTSIC` interrupt
#[inline]
pub fn enable_ctsic(&mut self) {
let bit = CTSIC;
self.config
.as_mut()
.registers
.enable_interrupts(unsafe { Flags::from_bits_unchecked(bit) });
}
/// Disable the `CTSIC` interrupt
#[inline]
pub fn disable_ctsic(&mut self) {
let bit = CTSIC;
self.config
.as_mut()
.registers
.disable_interrupts(unsafe { Flags::from_bits_unchecked(bit) });
}
}
impl<C, D> Uart<C, D>
where
C: ValidConfig,
D: Simplex,
{
/// Disable the UART peripheral and return the underlying [`Config`]
#[inline]
pub fn disable(self) -> C {
let mut config = self.config;
config.as_mut().registers.disable();
config
}
/// Reconfigure the UART.
///
/// Calling this method will temporarily disable the SERCOM peripheral, as
/// some registers are enable-protected. This may interrupt any ongoing
/// transactions.
///
/// ```
/// use atsamd_hal::sercom::uart::{BaudMode, Oversampling, Uart};
/// uart.reconfigure(|c| c.set_run_in_standby(false));
/// ```
#[inline]
pub fn reconfigure<U>(&mut self, update: U)
where
U: FnOnce(&mut SpecificConfig<C>),
{
self._reconfigure(update);
}
}
impl<C> Uart<C, Duplex>
where
C: ValidConfig,
{
/// Split the [`Uart`] into [`RxDuplex`] and [`TxDuplex`] halves
#[inline]
pub fn split(self) -> (Uart<C, RxDuplex>, Uart<C, TxDuplex>) {
let config = unsafe { core::ptr::read(&self.config) };
(
Uart {
config: self.config,
capability: PhantomData,
},
Uart {
config,
capability: PhantomData,
},
)
}
/// Disable the UART peripheral and return the underlying [`Config`]
#[inline]
pub fn disable(self) -> C {
let mut config = self.config;
config.as_mut().registers.disable();
config
}
/// Update the UART [`Config`]uration.
///
/// Calling this method will temporarily disable the SERCOM peripheral, as
/// some registers are enable-protected. This may interrupt any ongoing
/// transactions.
///
/// ```
/// use atsamd_hal::sercom::uart::{BaudMode, Oversampling, Uart};
/// uart.reconfigure(|c| c.set_run_in_standby(false));
/// ```
#[inline]
pub fn reconfigure<F>(&mut self, update: F)
where
F: FnOnce(&mut SpecificConfig<C>),
{
self._reconfigure(update);
}
/// Join [`RxDuplex`] and [`TxDuplex`] halves back into a full `Uart<C,
/// Duplex>`
pub fn join(rx: Uart<C, RxDuplex>, _tx: Uart<C, TxDuplex>) -> Self {
Self {
config: rx.config,
capability: PhantomData,
}
}
}
impl<C: ValidConfig> AsMut<Uart<C, Duplex>> for (&mut Uart<C, RxDuplex>, &mut Uart<C, TxDuplex>) {
#[inline]
fn as_mut(&mut self) -> &mut Uart<C, Duplex> {
// SAFETY: Pointer casting &mut Uart<C, RxDuplex> into &mut
// Uart<C, Duplex> should be safe as long as RxDuplex and Duplex
// both only have one nonzero-sized field.
unsafe { &mut *(self.0 as *mut _ as *mut Uart<C, Duplex>) }
}
}
impl<C, D> AsRef<SpecificConfig<C>> for Uart<C, D>
where
C: ValidConfig,
D: Capability,
{
#[inline]
fn as_ref(&self) -> &SpecificConfig<C> {
self.config.as_ref()
}
}
//=============================================================================
// Rx/Tx specific functionality
//=============================================================================
impl<C, D> Uart<C, D>
where
C: ValidConfig,
D: Receive,
DataReg: AsPrimitive<C::Word>,
{
/// Read from the DATA register
///
/// # Safety
///
/// Reading from the data register directly is `unsafe`, because it will
/// clear the RXC flag, which could break assumptions made elsewhere in
/// this module.
#[inline]
pub unsafe fn read_data(&mut self) -> DataReg {
self.config.as_mut().registers.read_data()
}
/// Read the status register and convert into a [`Result`]
/// containing the corresponding [`Flags`] or [`Error`]
#[inline]
fn read_flags_errors(&self) -> Result<Flags, Error> {
self.read_status().try_into()?;
Ok(self.read_flags())
}
/// Flush the RX buffer and clear RX errors.
///
/// **Note**: The datasheet states that disabling the receiver (RXEN) clears
/// the RX buffer, and clears the BUFOVF, PERR and FERR bits.
/// However, in practice, it seems like BUFOVF errors still pop
/// up after a disable/enable cycle of the receiver, then immediately begin
/// reading bytes from the DATA register. Instead, this method uses a
/// workaround, which reads a few bytes to clear the RX buffer (3 bytes
/// seems to be the trick), then manually clear the error bits.
#[inline]
pub fn flush_rx_buffer(&mut self) {
// TODO Is this a hardware bug???
/*
usart.ctrlb.modify(|_, w| w.rxen().clear_bit());
while usart.syncbusy.read().ctrlb().bit() || usart.ctrlb.read().rxen().bit_is_set() {}
usart.ctrlb.modify(|_, w| w.rxen().set_bit());
while usart.syncbusy.read().ctrlb().bit() || usart.ctrlb.read().rxen().bit_is_clear() {}
*/
for _ in 0..=2 {
let _data = unsafe { self.config.as_mut().registers.read_data() };
}
// Clear all errors
self.clear_status(
Status::BUFOVF | Status::FERR | Status::PERR | Status::ISF | Status::COLL,
);
}
}
impl<C, D> Uart<C, D>
where
C: ValidConfig,
D: Transmit,
{
/// Write to the DATA register
///
/// # Safety
///
/// Writing to the data register directly is `unsafe`, because it will clear
/// the DRE flag, which could break assumptions made elsewhere in this
/// module.
#[inline]
pub unsafe fn write_data(&mut self, data: DataReg) {
self.config.as_mut().registers.write_data(data);
}
}