1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
//! Implement [`embedded_hal`] traits for [`Spi`] structs
//!
//! As noted in the [spi module](super) documentation, the embedded-hal trait
//! implementations vary by both [`Size`] and [`Capability`]. Each
//! implementation is optimized to take advantage of all information known at
//! compile-time, so it is importatnt to carefully read the documentation in
//! this module.
//!
//! # Variations by [`Size`]
//!
//! Remember that SAMx5x chips operate in 32-bit extension mode and use the
//! hardware `LENGTH` counter to set the number of bytes in each transaction.
//! The transaction [`Length`] is usually tracked at compile-time using
//! type-level integers from the [`typenum`] crate, but it can also be tracked
//! at run-time when using a [`DynLength`].
//!
//! The transaction `Length`s can be sub-divided into three groups:
//! - `Length`s of 1-4 bytes can be completed in a single read/write of the
//! `DATA` register. These `Length`s are marked as [`AtomicSize`]s.
//! - `Length`s [`GreaterThan4`] are known at compile-time but cannot be
//! completed atomically.
//! - A `DynLength` can be any length, but the value is only known at run-time.
//!
//! In general, transaction lengths with an `AtomicSize` implement embedded HAL
//! traits with the corresponding [`Word`] type. For example, [`Spi`] structs
//! using a transaction `Length` of 2 bytes implement `FullDuplex<u16>`. These
//! lengths implement both the blocking and non-blocking traits from embedded
//! HAL. The non-blocking traits are found in the [`spi`] and [`serial`]
//! modules, while the blocking traits are found in the [`blocking`] module.
//!
//! Transaction lengths `GreaterThan4` cannot be completed in a single read or
//! write of the `DATA` register, so these lengths do **NOT** implement the
//! non-blocking traits from the embedded HAL `spi` and `serial` modules.
//! Instead, they only implement traits from the `blocking` module. These traits
//! are implemented for `u8` types, e.g. `blocking::spi::Transfer<u8>`, and
//! operate on `[u8]` slices. The length of the slice is checked to ensure it
//! matches the transaction `Length`.
//!
//! Because a `DynLength` is not guaranteed to be an `AtomicSize`, the
//! corresponding `Spi` structs only implement the `blocking` traits as well.
//!
//! For a non-blocking alternative that can be used to transfer arbitrary-length
//! slices, you could use either
#![cfg_attr(feature = "dma", doc = "[`DMA`](crate::dmac)")]
#![cfg_attr(not(feature = "dma"), doc = "`DMA`")]
//! or the [`spi_future`](super::super::spi_future) module.
//!
//! # Variations by [`Capability`]
//!
//! The implementations in this module also seek to optimize as much as possible
//! based on the `Capability` of the `Spi` struct. They follow a few general
//! rules:
//! - [`Tx`] structs can never receive data, so their corresponding trait
//! implementations never read the `DATA` register and can never return an
//! [`Error::Overflow`].
//! - [`Rx`] structs in a [`MasterMode`](super::MasterMode) must initiate all
//! transactions, so their implementations of non-blocking traits must track
//! the state of on-going transactions.
//! - [`Duplex`] structs must always read as many bytes as they send, even when
//! implementing `Write`-only traits, to ensure they never introduce an
//! [`Error::Overflow`].
//!
//! # Notes on individual embedded HAL traits
//!
//! ## `spi::FullDuplex`
//!
//! `spi::FullDuplex` is only implemented for structs with `Duplex`
//! `Capability`. Although the embedded HAL documentation assumes a
//! `MasterMode`, this module also implements it for the [`Slave`] [`OpMode`].
//!
//! ## `serial::Read`
//!
//! `serial::Read` is only implemented for structs with `Rx` `Capability`. When
//! in a `MasterMode`, it initiates and tracks the state of the on-going
//! transactions. But this is not required when acting as a `Slave`.
//!
//! ## `serial::Write`
//!
//! `serial::Write` is only implemented for structs with `Tx` `Capability`.
//! These implementations never read the `DATA` register and ignore all
//! instances of [`Error::Overflow`].
//!
//! ## `blocking::serial::Write`
//!
//! This trait uses the `blocking::serial::write::Default` implementation for
//! implementers of `serial::Write`.
//!
//! ## `blocking::spi` traits
//!
//! These traits are implemented following all of the rules outlined above for
//! the different [`Size`] and [`Capability`] options.
use embedded_hal::{blocking, serial, spi};
use nb::Error::WouldBlock;
use num_traits::{AsPrimitive, PrimInt};
use typenum::{U1, U2, U3, U4};
use crate::pac::sercom0::RegisterBlock;
use super::*;
//=============================================================================
// serial::Read
//=============================================================================
/// Implement [`serial::Read`] for [`Rx`] [`Spi`] structs in a [`MasterMode`]
///
/// `serial::Read` is only implemented for `Spi` structs with `Rx`
/// [`Capability`]. In a `MasterMode`, `Read` has to initiate transactions, so
/// it keeps track of the transaction state. If a transaction is in progress,
/// it will wait on `RXC`. If not, it will wait on `DRE`, and then send `0`.
impl<P, M, L> serial::Read<L::Word> for Spi<Config<P, M, L>, Rx>
where
Config<P, M, L>: ValidConfig,
P: ValidPads,
M: MasterMode,
L: Length,
L::Word: PrimInt,
u32: AsPrimitive<L::Word>,
{
type Error = Error;
#[inline]
fn read(&mut self) -> nb::Result<L::Word, Error> {
let in_progress = self.capability.in_progress;
let flags = self.read_flags_errors()?;
if !in_progress && flags.contains(Flags::DRE) {
unsafe { self.write_data(0) };
self.capability.in_progress = true;
Err(WouldBlock)
} else if in_progress && flags.contains(Flags::RXC) {
self.capability.in_progress = false;
unsafe { Ok(self.read_data().as_()) }
} else {
Err(WouldBlock)
}
}
}
/// Implement [`serial::Read`] for [`Rx`] [`Spi`] structs in [`Slave`]
/// [`OpMode`]
///
/// `serial::Read` is only implemented for `Spi` structs with `Rx`
/// [`Capability`]. In `Slave` `OpMode`, `Read` does not have to initiate
/// transactions, so it does not have to store any internal state. It only has
/// to wait on `RXC`.
impl<P, L> serial::Read<L::Word> for Spi<Config<P, Slave, L>, Rx>
where
Config<P, Slave, L>: ValidConfig,
P: ValidPads,
L: Length,
L::Word: PrimInt,
u32: AsPrimitive<L::Word>,
{
type Error = Error;
#[inline]
fn read(&mut self) -> nb::Result<L::Word, Error> {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::RXC) {
unsafe { Ok(self.read_data().as_()) }
} else {
Err(WouldBlock)
}
}
}
//=============================================================================
// serial::Write
//=============================================================================
/// Implement [`serial::Write`] for [`Tx`] [`Spi`] structs
///
/// `serial::Write` is only implemented for `Spi` structs with `Tx`
/// [`Capability`]. Because the `Capability` is `Tx`, this implementation never
/// reads the DATA register and ignores all buffer overflow errors.
impl<C> serial::Write<C::Word> for Spi<C, Tx>
where
C: ValidConfig,
C::Size: AtomicSize,
C::Word: PrimInt + AsPrimitive<u32>,
{
type Error = Error;
#[inline]
fn write(&mut self, word: C::Word) -> nb::Result<(), Error> {
// Ignore buffer overflow errors
if self.read_status().contains(Status::LENERR) {
Err(Error::LengthError.into())
} else if self.read_flags().contains(Flags::DRE) {
self.config.as_mut().regs.write_data(word.as_());
Ok(())
} else {
Err(WouldBlock)
}
}
#[inline]
fn flush(&mut self) -> nb::Result<(), Error> {
// Ignore buffer overflow errors
if self.read_status().contains(Status::LENERR) {
Err(Error::LengthError.into())
} else if self.read_flags().contains(Flags::TXC) {
Ok(())
} else {
Err(WouldBlock)
}
}
}
//=============================================================================
// blocking::serial::Write
//=============================================================================
impl<C> blocking::serial::write::Default<C::Word> for Spi<C, Tx>
where
C: ValidConfig,
Spi<C, Tx>: serial::Write<C::Word>,
{
}
//=============================================================================
// spi::FullDuplex
//=============================================================================
/// Implement [`spi::FullDuplex`] for [`Spi`] structs with [`AtomicSize`]
///
/// `spi::FullDuplex` is only implemented when the `Spi` struct has [`Duplex`]
/// [`Capability`] and the transaction [`Length`] is `<= 4` bytes. When the
/// [`Length`] is `<= 4`, the [`Word`] is a primitive integer, with a size that
/// depends on the [`Length`] (`u8`, `u16` or `u32`).
impl<C> spi::FullDuplex<C::Word> for Spi<C, Duplex>
where
C: ValidConfig,
C::Size: AtomicSize,
C::Word: PrimInt + AsPrimitive<u32>,
u32: AsPrimitive<C::Word>,
{
type Error = Error;
#[inline]
fn read(&mut self) -> nb::Result<C::Word, Error> {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::RXC) {
Ok(self.config.as_mut().regs.read_data().as_())
} else {
Err(WouldBlock)
}
}
#[inline]
fn send(&mut self, word: C::Word) -> nb::Result<(), Error> {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::DRE) {
self.config.as_mut().regs.write_data(word.as_());
Ok(())
} else {
Err(WouldBlock)
}
}
}
//=============================================================================
// blocking::spi::Transfer
//=============================================================================
macro_rules! impl_blocking_spi_transfer {
( $($Length:ident),+ ) => {
$(
/// Implement [`Transfer`] for [`Spi`] structs that can [`Receive`]
/// and have an [`AtomicSize`]
///
/// The transaction [`Length`] must be `<= 4`. The transfer accepts
/// a slice of primitive integers, depending on the `Length`
/// (`u8`, `u16` or `u32`).
///
/// [`Transfer`]: blocking::spi::Transfer
impl<P, M, A> blocking::spi::Transfer<Word<$Length>> for Spi<Config<P, M, $Length>, A>
where
Config<P, M, $Length>: ValidConfig,
P: ValidPads,
M: OpMode,
A: Receive,
{
type Error = Error;
#[inline]
fn transfer<'w>(&mut self, words: &'w mut [Word<$Length>]) -> Result<&'w [Word<$Length>], Error> {
let cells = core::cell::Cell::from_mut(words).as_slice_of_cells();
let mut to_send = cells.iter();
let mut to_recv = cells.iter();
while to_recv.len() > 0 {
let flags = self.read_flags_errors()?;
if to_send.len() > 0 && flags.contains(Flags::DRE) {
let word = match to_send.next() {
Some(cell) => cell.get(),
None => unreachable!(),
};
self.config.as_mut().regs.write_data(word as u32);
}
if to_recv.len() > to_send.len() && flags.contains(Flags::RXC) {
let word = self.config.as_mut().regs.read_data() as Word<$Length>;
match to_recv.next() {
Some(cell) => cell.set(word),
None => unreachable!(),
}
}
}
Ok(words)
}
}
)+
}
}
impl_blocking_spi_transfer!(U1, U2, U3, U4);
/// Implement [`Transfer`] for [`Spi`] structs that can [`Receive`] and have
/// long transaction [`Length`]s
///
/// The transaction [`Length`] must be `> 4`. The transfer accepts a slice of
/// `u8` with a length equal to the transaction [`Length`]. If the slice length
/// is incorrect, it will panic.
///
/// [`Transfer`]: blocking::spi::Transfer
impl<P, M, L, A> blocking::spi::Transfer<u8> for Spi<Config<P, M, L>, A>
where
Config<P, M, L>: ValidConfig,
P: ValidPads,
M: OpMode,
L: GreaterThan4,
A: Receive,
{
type Error = Error;
#[inline]
fn transfer<'w>(&mut self, buf: &'w mut [u8]) -> Result<&'w [u8], Error> {
assert_eq!(buf.len(), L::USIZE);
let sercom = unsafe { self.config.as_ref().sercom() };
transfer_slice(sercom, buf)
}
}
/// Implement [`Transfer`] for [`Spi`] structs that can [`Receive`] and have
/// [`DynLength`]
///
/// The transfer accepts a slice of `u8` with a length equal to the run-time
/// dynamic transaction length. If the slice length does not match the result
/// of [`Spi::get_dyn_length`], it will panic.
///
/// [`Transfer`]: blocking::spi::Transfer
impl<P, M, A> blocking::spi::Transfer<u8> for Spi<Config<P, M, DynLength>, A>
where
Config<P, M, DynLength>: ValidConfig,
P: ValidPads,
M: OpMode,
A: Receive,
{
type Error = Error;
#[inline]
fn transfer<'w>(&mut self, buf: &'w mut [u8]) -> Result<&'w [u8], Error> {
assert_eq!(buf.len(), self.get_dyn_length() as usize);
let sercom = unsafe { self.config.as_ref().sercom() };
transfer_slice(sercom, buf)
}
}
//=============================================================================
// blocking::spi::Write
//=============================================================================
macro_rules! impl_blocking_spi_write {
( $($Length:ident),+ ) => {
$(
/// Implement [`Write`] for [`Spi`] structs with [`Duplex`]
/// [`Capability`] and an [`AtomicSize`]
///
/// The transaction `Length` must be `<= 4`. The transfer accepts
/// a slice of primitive integers, depending on the `Length`
/// (`u8`, `u16` or `u32`).
///
/// [`Write`]: blocking::spi::Write
impl<P, M> blocking::spi::Write<Word<$Length>> for Spi<Config<P, M, $Length>, Duplex>
where
Config<P, M, $Length>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write(&mut self, words: &[Word<$Length>]) -> Result<(), Error> {
// We are `Duplex`, so we must receive as many words as we send,
// otherwise we could trigger an overflow
let mut to_send = words.iter();
let mut to_recv = to_send.len();
while to_recv > 0 {
let flags = self.read_flags_errors()?;
if to_send.len() > 0 && flags.contains(Flags::DRE) {
let word = match to_send.next() {
Some(word) => *word,
None => unreachable!(),
};
self.config.as_mut().regs.write_data(word as u32);
}
if to_recv > to_send.len() && flags.contains(Flags::RXC) {
self.config.as_mut().regs.read_data() as Word<$Length>;
to_recv -= 1;
}
}
Ok(())
}
}
/// Implement [`Write`] for [`Spi`] structs with [`Tx`]
/// [`Capability`] and an [`AtomicSize`]
///
/// The transaction `Length` must be `<= 4`. The transfer accepts
/// a slice of primitive integers, depending on the `Length`
/// (`u8`, `u16` or `u32`).
///
/// Because the `Capability` is `Tx`, this implementation never
/// reads the DATA register and ignores all buffer overflow errors.
///
/// [`Write`]: blocking::spi::Write
impl<P, M> blocking::spi::Write<Word<$Length>> for Spi<Config<P, M, $Length>, Tx>
where
Config<P, M, $Length>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write(&mut self, words: &[Word<$Length>]) -> Result<(), Error> {
// We are `Tx`, so we don't have to consider reading at all, ever.
for word in words {
loop {
// Ignore buffer overflow errors
if self.read_status().contains(Status::LENERR) {
return Err(Error::LengthError)
} else if self.read_flags().contains(Flags::DRE) {
self.config.as_mut().regs.write_data(*word as u32);
break
}
}
}
Ok(())
}
}
)+
}
}
impl_blocking_spi_write!(U1, U2, U3, U4);
/// Implement [`Write`] for [`Spi`] structs with [`Duplex`] [`Capability`] and
/// long transaction [`Length`]s
///
/// The transaction [`Length`] must be `> 4`. The transfer accepts a `[u8]` with
/// a length equal to the transfer [`Length`]. If the slice length is incorrect,
/// it will panic.
///
/// [`Write`]: blocking::spi::Write
impl<P, M, L> blocking::spi::Write<u8> for Spi<Config<P, M, L>, Duplex>
where
Config<P, M, L>: ValidConfig,
P: ValidPads,
M: OpMode,
L: GreaterThan4,
{
type Error = Error;
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
if buf.len() != L::USIZE {
panic!("Slice length does not equal SPI transfer length");
}
let sercom = unsafe { self.config.as_ref().sercom() };
write_slice(sercom, buf, true)
}
}
/// Implement [`Write`] for [`Spi`] structs with [`Tx`] [`Capability`] and long
/// transaction [`Length`]s
///
/// The transaction [`Length`] must be `> 4`. The transfer accepts a `[u8]` with
/// a length equal to the transfer [`Length`]. If the slice length is incorrect,
/// it will panic.
///
/// Because the `Capability` is `Tx`, this implementation never reads the DATA
/// register and ignores all buffer overflow errors.
///
/// [`Write`]: blocking::spi::Write
impl<P, M, L> blocking::spi::Write<u8> for Spi<Config<P, M, L>, Tx>
where
Config<P, M, L>: ValidConfig,
P: ValidPads,
M: OpMode,
L: GreaterThan4,
{
type Error = Error;
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
if buf.len() != L::USIZE {
panic!("Slice length does not equal SPI transfer length");
}
let sercom = unsafe { self.config.as_ref().sercom() };
write_slice(sercom, buf, false)
}
}
/// Implement [`Write`] for [`Spi`] structs with [`Duplex`] [`Capability`] and
/// [`DynLength`]
///
/// The transfer accepts a `[u8]` with a length equal to the run-time dynamic
/// transaction length. If the slice length does not match the result of
/// [`Spi::get_dyn_length`], it will panic.
///
/// [`Write`]: blocking::spi::Write
impl<P, M> blocking::spi::Write<u8> for Spi<Config<P, M, DynLength>, Duplex>
where
Config<P, M, DynLength>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
if buf.len() != self.get_dyn_length() as usize {
panic!("Slice length does not equal SPI transfer length");
}
let sercom = unsafe { self.config.as_ref().sercom() };
write_slice(sercom, buf, true)
}
}
/// Implement [`Write`] for [`Spi`] structs with [`Tx`] [`Capability`] and
/// [`DynLength`]
///
/// The transfer accepts a `[u8]` with a length equal to the run-time dynamic
/// transaction length. If the slice length does not match the result of
/// `Spi::get_dyn_length`], it will panic.
///
/// Because the `Capability` is `Tx`, this implementation never reads the DATA
/// register and ignores all buffer overflow errors.
///
/// [`Write`]: blocking::spi::Write
impl<P, M> blocking::spi::Write<u8> for Spi<Config<P, M, DynLength>, Tx>
where
Config<P, M, DynLength>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
if buf.len() != self.get_dyn_length() as usize {
panic!("Slice length does not equal SPI transfer length");
}
let sercom = unsafe { self.config.as_ref().sercom() };
write_slice(sercom, buf, false)
}
}
//=============================================================================
// blocking::spi::WriteIter
//=============================================================================
macro_rules! impl_blocking_spi_write_iter {
( $($Length:ident),+ ) => {
$(
/// Implement [`WriteIter`] for [`Spi`] structs with [`Duplex`]
/// [`Capability`] and an [`AtomicSize`]
///
/// The transaction `Length` must be `<= 4`. The transfer accepts
/// a slice of primitive integers, depending on the `Length`
/// (`u8`, `u16` or `u32`).
///
/// [`WriteIter`]: blocking::spi::WriteIter
#[cfg(feature = "unproven")]
impl<P, M> blocking::spi::WriteIter<Word<$Length>> for Spi<Config<P, M, $Length>, Duplex>
where
Config<P, M, $Length>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write_iter<WI>(&mut self, words: WI) -> Result<(), Error>
where
WI: IntoIterator<Item = Word<$Length>>,
{
// We are `Duplex`, so we must receive as many words as we send,
// otherwise we could trigger an overflow. However, we don't know
// how many words there are to start with, so we have to send and
// receive them one at a time.
for word in words.into_iter() {
loop {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::DRE) {
unsafe { self.write_data(word as u32) };
break
}
}
loop {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::RXC) {
self.config.as_mut().regs.read_data() as Word<$Length>;
break
}
}
}
Ok(())
}
}
/// Implement [`WriteIter`] for [`Spi`] structs with [`Tx`]
/// [`Capability`] and an [`AtomicSize`]
///
/// The transaction `Length` must be `<= 4`. The transfer accepts
/// a slice of primitive integers, depending on the `Length`
/// (`u8`, `u16` or `u32`).
///
/// Because the `Capability` is `Tx`, this implementation never
/// reads the DATA register and ignores all buffer overflow errors.
///
/// [`WriteIter`]: blocking::spi::WriteIter
#[cfg(feature = "unproven")]
impl<P, M> blocking::spi::WriteIter<Word<$Length>> for Spi<Config<P, M, $Length>, Tx>
where
Config<P, M, $Length>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write_iter<WI>(&mut self, words: WI) -> Result<(), Error>
where
WI: IntoIterator<Item = Word<$Length>>,
{
// We are `Tx`, so we don't have to consider reading at all, ever.
for word in words.into_iter() {
loop {
// Ignore buffer overflow errors
if self.read_status().contains(Status::LENERR) {
return Err(Error::LengthError)
} else if self.read_flags().contains(Flags::DRE) {
unsafe { self.write_data(word as u32) };
break
}
}
}
Ok(())
}
}
)+
};
}
impl_blocking_spi_write_iter!(U1, U2, U3, U4);
//=============================================================================
// Helper functions
//=============================================================================
/// Transfer a `[u8]` slice four bytes at a time
///
/// This function exists to avoid both code duplication and monomorphization
/// bloat. It will take a `[u8]` and transfer it four bytes at a time.
fn transfer_slice<'w>(sercom: &RegisterBlock, buf: &'w mut [u8]) -> Result<&'w [u8], Error> {
let cells = core::cell::Cell::from_mut(buf).as_slice_of_cells();
let mut to_send = cells.iter();
let mut to_recv = cells.iter();
while to_recv.len() > 0 {
let errors = sercom.spim().status.read();
if errors.bufovf().bit_is_set() {
return Err(Error::Overflow);
}
if errors.lenerr().bit_is_set() {
return Err(Error::LengthError);
}
let flags = sercom.spim().intflag.read();
if to_send.len() > 0 && flags.dre().bit_is_set() {
let mut bytes = [0; 4];
for byte in &mut bytes {
match to_send.next() {
Some(cell) => *byte = cell.get(),
None => break,
}
}
let word = u32::from_le_bytes(bytes);
sercom.spim().data.write(|w| unsafe { w.data().bits(word) });
}
if to_recv.len() > to_send.len() && flags.rxc().bit_is_set() {
let word = sercom.spim().data.read().data().bits();
let bytes = word.to_le_bytes();
for byte in bytes.iter() {
match to_recv.next() {
Some(cell) => cell.set(*byte),
None => break,
}
}
}
}
Ok(buf)
}
/// Write a `[u8]` four bytes at a time
///
/// This function exists to avoid both code duplication and monomorphization
/// bloat. It will take a `[u8]` and write four bytes at a time to the SPI on
/// every DRE flag. If the `duplex` argument is true, it will read as many times
/// as it writes. Otherwise, it will skip reading the `DATA` register entirely.
/// If `duplex` is false, buffer overflow errors are ignored
fn write_slice(sercom: &RegisterBlock, buf: &[u8], duplex: bool) -> Result<(), Error> {
let mut to_send = buf.iter();
let mut to_recv: usize = to_send.len();
while to_recv > 0 {
let errors = sercom.spim().status.read();
if duplex && errors.bufovf().bit_is_set() {
return Err(Error::Overflow);
}
if errors.lenerr().bit_is_set() {
return Err(Error::LengthError);
}
let flags = sercom.spim().intflag.read();
// Send the word
if to_send.len() > 0 && flags.dre().bit_is_set() {
let mut bytes = [0; 4];
for byte in &mut bytes {
match to_send.next() {
Some(d) => *byte = *d,
None => break,
}
}
let word = u32::from_le_bytes(bytes);
sercom.spim().data.write(|w| unsafe { w.data().bits(word) });
}
if duplex && to_recv > to_send.len() && flags.rxc().bit_is_set() {
sercom.spim().data.read().data().bits();
let diff = to_recv - to_send.len();
to_recv -= if diff < 4 { diff } else { 4 };
}
}
Ok(())
}