1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
//! # Version 2 of the `clock` module
//!
//! ## Overview
//!
//! This module provides a simple, ergonomic, and most of all **safe** API to
//! create and manage the clock tree in ATSAMD5x and E5x devices. It uses
//! [type-level programming techniques](crate::typelevel) to prevent users from
//! creating invalid or unsound clocking configurations.
//!
//! <p style="background:rgba(255,181,77,0.16);padding:0.75em;">
//! <strong> Note: </strong> Using a type-level API does place some limitations
//! on how the clocks can be configured. The types must be checked at
//! compile-time, which means the state of a given clock must also be known at
//! compile-time. This is exceedingly reasonable for most clocking
//! configurations, because most users set up their clocks once and never change
//! them again. However, if you need to dynamically change the clocking
//! configuration at run-time, you may find this API less ergonomic. A future,
//! fully dynamic API has been discussed, but nothing has been developed so far.
//! </p>
//!
//! The sections that follow provide an explanation of key concepts in the
//! module. We highly recommend users read through them to better understand the
//! `clock` module API. A [complete example](self#getting-started) is also
//! provided.
//!
//! ## Clock safety
//!
//! A clock tree represents dependencies among clocks, where producer clocks
//! feed consumer clocks. Root clocks are the original producers, as they are
//! derived from oscillators or external clocks. Branch clocks are both
//! producers and consumers, since they modify and distribute clocks. And leaf
//! clocks are consumers only; they drive peripherals or external clock outputs
//! but do not feed other clocks.
//!
//! To safely create and use a clock tree, it is critical that producer clocks
//! not be modified or disabled while their consumer clocks are still in active
//! use. Stated differently, if clock `B` consumes clock `A`, then clock `A`
//! **must not** be modified or disabled while clock `B` is still in use.
//!
//! Notice that this requirement mimics the principle of "aliased XOR mutable"
//! underlying the Rust borrow checker. A producer clock can only be modified if
//! it is not "borrowed" (consumed) by any other clocks.
//!
//! The following sections will review the various type-level programming
//! techniques used to enforce this principle in the `clock` module.
//!
//! ## Clock state machines
//!
//! Each available clock is represented in Rust as a unique, singleton object.
//! Users cannot create two instances of the same clock without using `unsafe`.
//!
//! However, a given clock is not always represented with the same **type**.
//! Specifically, each clock has at least two representations, one for the
//! configured and enabled clock, and another for the unconfigured and disabled
//! clock.
//!
//! These states are represented in Rust using distinct types, forming a
//! type-level state machine. Moreover, the disabled state is always represented
//! by a `Token` type. As the name implies, `Token`s have no functionality on
//! their own; they can only be exchanged for a different type representing
//! another state.
//!
//! ## Clock relationships
//!
//! In general, there are two classes of clock in ATSAMD chips. Some clocks map
//! one-to-one (1:1) to a specific bus or peripheral. This is true for the AHB
//! clocks ([`AhbClk`]s), APB clocks ([`ApbClk`]s), GCLK outputs ([`GclkOut`]s),
//! peripheral channel clocks ([`Pclk`]s), and RTC oscillator ([`RtcOsc`]).
//! Other clocks form one-to-many (1:N) relationships, like the external crystal
//! oscillator ([`Xosc`]), the 48 MHz DFLL ([`Dfll`]) or the two DPLLs
//! ([`Dpll`]).
//!
//! The `clock` module uses a distinct approach for each class.
//!
//! ### 1:1 clocks
//!
//! One-to-one relationships are easily modelled in Rust using move semantics.
//! For example, an enabled peripheral channel clock is represented as a
//! [`Pclk`] object. The respective peripheral API can move the `Pclk` and take
//! ownership of it. In that case, the `Pclk` acts as proof that the peripheral
//! clock is enabled, and the transfer of ownership prevents users from
//! modifying or disabling the `Pclk` while it is in use by the peripheral.
//!
//! One-to-one clocks generally have little to no configuration. They are
//! typically converted directly from disabled `Token` types to fully enabled
//! clock types. For example, the `Pclk` type has only two methods,
//! [`Pclk::enable`] and [`Pclk::disable`], which convert [`PclkToken`]s to
//! `Pclk`s and vice versa.
//!
//! ### 1:N clocks
//!
//! One-to-many relationships are more difficult to model in Rust.
//!
//! As discussed above, we are trying to create something akin to "aliased XOR
//! mutable", where producer clocks cannot be modified while used by consumer
//! clocks. A natural approach would be to use the Rust borrow checker directly.
//! In that case, consumer clocks would hold `&Producer` references to the
//! `Producer` clock object. The existence of outstanding shared borrows would
//! naturally prevent users from calling `Producer` methods taking `&mut self`.
//!
//! Unfortunately, while this approach could work, there is a critical problem
//! with disastrous consequences for ergonomics. To satisfy the Rust borrow
//! checker, `Producer` clock objects *could not be moved* while `&Producer`
//! references were still held by consumer clocks.
//!
//! However, this restriction is unnecessary. A `Producer` clock object is
//! merely a semantic object representing the "idea" of a producer clock. And
//! "borrowing" the producer is not meant to protect memory from corruption.
//! Rather, our goal is only to restrict the `Producer` API, to prevent it from
//! being modified or disabled once it has been connected to a consumer. We
//! don't need to permanently hold the `Producer` object in place to do that.
//!
//! It is possible to build a `clock` API based on the borrow checker, but it
//! would be extremely frustrating to use in practice, because of restrictions
//! on the movement of `Producer` objects.
//!
//! Instead, the `clock` module takes a different approach. It uses type-level
//! programming to track, at compile-time, the number of consumer clocks, N,
//! fed by a particular producer clock. With this approach, we can move
//! `Producer` objects while still making them impossible to modify if N > 0.
//!
//! The following sections will describe the implementation of this strategy.
//!
//! ## Tracking N at compile-time for 1:N clocks
//!
//! We have two specific goals. We need to both track the number of consumer
//! clocks, N, that are actively using a given producer clock. And we need to
//! restrict the producer clock API when N > 0.
//!
//! ### A compile-time counter
//!
//! First, we need to develop some way to track the number of consumer clocks,
//! N, within the type system. To accomplish this, we need both a way to
//! represent N in the type system and a way to increase or decrease N when
//! making or breaking connections in the clock tree.
//!
//! To represent N, we can use type-level, [`Unsigned`] integers from the
//! [`typenum`] crate (i.e. [`U0`], [`U1`], etc). And we can use a type
//! *parameter*, `N`, to represent some unknown, type-level number.
//!
//! Next, we need a way to increase or decrease the type parameter `N`. The
//! [`typenum`] crate provides type aliases [`Add1`] and [`Sub1`] that map from
//! each [`Unsigned`] integer to its successor and predecessor types,
//! respectively. We can leverage these to create our own type with a counter
//! that we [`Increment`] or [`Decrement`] at compile-time. These two traits
//! form the foundation for our strategy for handling 1:N clocks in this module.
//!
//! ### The `Enabled` wrapper
//!
//! Our representation of a 1:N producer clock is [`Enabled<T, N>`], which is a
//! wrapper struct that pairs some *enabled* clock type `T` with a type `N`
//! representing a consumer count. The wrapper restricts access to the
//! underlying clock type, `T`, allowing us to selectively define methods when
//! `N = U0`, that is, when there are no consumers of a given producer clock.
//!
//! The [`Enabled`] type itself implements [`Increment`] and [`Decrement`] as
//! well, which allows type-level transformations to increment or decrement the
//! counter, e.g. `Enabled<T, U0>` to `Enabled<T, U1>`. Such transformations can
//! only be performed within the HAL; so users cannot change the consumer count
//! arbitrarily.
//!
//! ### Acting as a clock `Source`
//!
//! Finally, we need to define some generic interface for interacting with 1:N
//! producer clocks. However, when designing this interface, we need to be
//! careful not to lose information during type-level transformations.
//!
//! In particular, the `Enabled` counter type alone is not enough for proper
//! clock safety. If we used consumer `A` to `Increment` producer `P` from
//! `Enabled<P, U0>` to `Enabled<P, U1>`, but then used consumer `B` to
//! `Decrement` the producer back to `Enabled<P, U0>`, we would leave consumer
//! `A` dangling.
//!
//! To solve this problem, we need some way to guarantee that a given consumer
//! can only `Decrement` the same producer it `Increment`ed. Stated differently,
//! we need a way to track the identity of each consumer's clock source.
//!
//! The [`Source`] trait is designed for this purpose. It marks
//! [`Enabled<T, N>`] producer clocks, and it's associated type, [`Id`], is the
//! identity type that should be stored by consumers.
//!
//! Given that all implementers of `Source` are instances of `Enabled<T, N>`,
//! the naïve choice for [`Source::Id`] would be `T`. However, in a moment, we
//! will see why this choice is not ideal.
//!
//! ### `Id` types
//!
//! Many of the clock types in this module have additional type parameters that
//! track the clock's configuration. For instance, [`Xosc0<M>`] represents one
//! of the external crystal oscillators. Here, the type parameter `M` represents
//! the XOSC's [`Mode`](xosc::Mode), which can either be [`CrystalMode`] or
//! [`ClockMode`]. Accordingly, methods to adjust the crystal current, etc. are
//! only available on `Xosc0<CrystalMode>`.
//!
//! While these type parameters are important and necessary for configuration of
//! a given producer clock, they are not relevant to consumer clocks. A consumer
//! clock does not need to know or care which `Mode` the XOSC is using, but
//! it *does* need to track that its clock [`Source`] is XOSC0.
//!
//! From this, we can see that `Enabled<Xosc0<M>, N>` should not implement
//! `Source` with `Source::Id = Xosc0<M>`, because that would require consumers
//! to needlessly track the XOSC `Mode`.
//!
//! Instead, this module defines a series of `Id` types representing the
//! *identity* of a given clock, rather than the clock itself. This is like the
//! distinction between a passport and a person. A passport identifies a person,
//! regardless of changes to their clothes or hair. The `Id` types serve to
//! erase configuration information, representing only the clock's identity.
//!
//! For `Xosc0<M>`, the corresponding `Id` type is [`Xosc0Id`]. Thus,
//! `Enabled<Xosc0<M>, N>` implements `Source` with `Source::Id = Xosc0Id`.
//!
//! ## Notes on memory safety
//!
//! ### Register interfaces
//!
//! Although HAL users see `Token` types as merely opaque objects, internally
//! they serve a dual purpose as the primary register interface to control the
//! corresponding clock. Moreover, they also fundamentally restructure the way
//! registers are accessed relative to the [PAC].
//!
//! Each of the four PAC clocking structs ([`OSCCTRL`], [`OSC32KCTRL`], [`GCLK`]
//! and [`MCLK`]) is a singleton object that controls a set of MMIO registers.
//! It is impossible to create two instances of any PAC object without `unsafe`.
//! However, each object controls a large set of registers that can be further
//! sub-divided into smaller sets for individual clocks. For example, the
//! [`GCLK`] object controls registers for 12 different clock generators and 48
//! peripheral channel clocks.
//!
//! `Token` types serve to break up the large PAC objects into smaller,
//! more-targetted pieces. And in the process, they also remove the PAC objects'
//! [interior mutability]. But this is only possible because each `Token` is
//! *also* a singleton, and because individual clocks are configured through
//! *mutually exclusive* sets of registers.
//!
//! ### Bus clocks
//!
//! Bus clocks are fundamentally different from the other clock types in this
//! module, because they do not use mutually exclusive registers for
//! configuration. For instance, the registers that control [`Dpll0`] are
//! mutually exclusive to those that control [`Dpll1`], but `ApbClk<Sercom0>`
//! and `ApbClk<Sercom1>` share a single register.
//!
//! This presents a challenge for memory safety, because we need some way to
//! guarantee that there are no data races. For example, if both
//! `ApbClk<Sercom0>` and `ApbClk<Sercom1>` tried to modify the `APBAMASK`
//! register from two different execution contexts, a read/modify/write
//! operation could be preempted, leading to memory corruption.
//!
//! To prevent data races when controlling bus clocks, we introduce two new
//! types to mediate access to the shared registers. For [`AhbClk`]s, this is
//! the [`Ahb`] type; and for [`ApbClk`]s, this is the [`Apb`] type. In a sense,
//! the `Ahb` and `Apb` types represent the actual corresponding buses. Thus,
//! enabling an APB clock by converting an [`ApbToken`] into an `ApbClk`
//! requires exclusive access to the `Apb` in the form of `&mut Apb`.
//!
//! ## Getting started
//!
//! To set up a clock tree, start by trading the [PAC](crate::pac)-level
//! clocking structs for their HAL equivalents. Right now, the only way to do so
//! safely is using the [`clock_system_at_reset`] function, which assumes all
//! clocks are in their default state at power-on reset. If this is not the
//! case, because, for example, a bootloader has modified the clocks, then you
//! may need to manually create the matching configuration using `unsafe` code.
//!
//! ```no_run
//! use atsamd_hal::clock::v2::clock_system_at_reset;
//! use atsamd_hal::pac::Peripherals;
//! let mut pac = Peripherals::take().unwrap();
//! let (buses, clocks, tokens) = clock_system_at_reset(
//!     pac.OSCCTRL,
//!     pac.OSC32KCTRL,
//!     pac.GCLK,
//!     pac.MCLK,
//!     &mut pac.NVMCTRL,
//! );
//! ```
//!
//! At this point, you may notice that the function returned three different
//! objects, the [`Buses`], [`Clocks`] and [`Tokens`].
//!
//! The [`Buses`] struct contains the [`Ahb`] and [`Apb`] objects, which
//! represent the corresponding AHB and APB buses. See the [notes on memory
//! safety](self#notes-on-memory-safety) for more details on these types.
//!
//! The [`Clocks`] struct contains all of the clocks that are enabled and
//! running at power-on reset, specifically:
//! - All of the [`AhbClks`]
//! - Some of the [`ApbClks`]
//! - The 48 MHz [`Dfll`], running in open-loop mode, represented as as
//!   `Enabled<Dfll, U1>`. `N = U1` here because [`Gclk0`] consumes it. See
//!   [above](self#tracking-n-at-compile-time-for-1n-clocks) for details on
//!   [`Enabled<T, N>`].
//! - [`Gclk0`], sourced by the `Dfll` and represented as
//!   `Enabled<Gclk0<DfllId>, U1>`. Note the use of [`DfllId`] as an [`Id`
//!   type](self#id-types) here. Although `Gclk0` is not consumed by any clock
//!   represented in this module, it *is* consumed by the processor's main
//!   clock. We represent this by setting `N = U1`, which we use to restrict the
//!   available API. Specifically, [`EnabledGclk0`] has special methods not
//!   available to other [`Gclk`]s.
//! - The [`OscUlp32kBase`] clock, which can act as a [`Source`] for the
//!   [`OscUlp1k`] and [`OscUlp32k`] clocks. It has no consumers at power-on
//!   reset, so it is represented as `Enabled<OscUlp32kBase, U0>`. However, it
//!   can never be disabled, so we provide no `.disable()` method.
//!
//! The [`Tokens`] struct contains all of the available `Token`s, which
//! [represent clocks that are disabled](self#clock-state-machines) at power-on
//! reset. Each `Token` can be exchanged for a corresponding clock object.
//!
//! ## Example clock tree
//!
//! Finally, we will walk through the creation of a simple clock tree to
//! illustrate some of the remaining concepts inherent to this module.
//!
//! Starting from the previous snippet, we have the [`Buses`], [`Clocks`] and
//! [`Tokens`] to work with, and our clock tree at power-on reset looks like
//! this.
//!
//! ```text
//! DFLL (48 MHz)
//! └── GCLK0 (48 MHz)
//!     └── Main clock (48 MHz)
//! ```
//!
//! Our goal will be a clock tree that looks like this:
//!
//! ```text
//! XOSC0 (8 MHz)
//! └── DPLL0 (100 MHz)
//!     └── GCLK0 (100 MHz)
//!         ├── Main clock (100 MHz)
//!         ├── SERCOM0 peripheral clock
//!         └── Output to GPIO pin
//! ```
//!
//! We will use an external crystal oscillator running at 8 MHz to feed a DPLL,
//! which will increase the clock frequency to 100 MHz. Then, we will
//! reconfigure GCLK0 to use the 100 MHz DPLL clock instead of the 48 MHz DFLL
//! clock.
//!
//! First, let's import some of the necessary types. We will see what each type
//! represents in turn.
//!
//! ```no_run
//! use atsamd_hal::{
//!     clock::v2::{
//!         clock_system_at_reset,
//!         dpll::Dpll,
//!         pclk::Pclk,
//!         xosc::Xosc,
//!     },
//!     gpio::Pins,
//!     pac::Peripherals,
//!     time::U32Ext,
//! };
//! ```
//!
//! To create an instance of [`Xosc`], we will first need to identify which of
//! the two XOSC clocks we will use. Suppose an external crystal is attached to
//! pins `PA14` and `PA15`. These pins feed the XOSC0 clock, so we will want to
//! create an instance of [`Xosc0`]. Note that `Xosc0<M>` is merely an alias for
//! `Xosc<Xosc0Id, M>`. Here, [`Xosc0Id`] represents the
//! [*identity*](self#id-types) of the XOSC0 clock, rather than the clock
//! itself, and `M` represents the XOSC [`Mode`](xosc::Mode).
//!
//! Next, we access the [`Tokens`] struct to extract the corresponding
//! [`XoscToken`] for XOSC0, and we trade the PAC `PORT` struct for the
//! [`gpio::Pins`] struct to access the GPIO pins. We can then call
//! [`Xosc::from_crystal`] to trade the token and [`Pin`]s to yield an instance
//! of [`Xosc0`]. In doing so, we also provide the oscillator frequency.
//!
//! Finally, we can chain a call to the [`Xosc::enable`] method to enable the
//! XOSC and return an instance of [`EnabledXosc0<M, N>`], which is simply an
//! alias for `Enabled<Xosc0<M>, N>`. In this case, we get
//! `EnabledXosc0<CrystalMode, U0>`.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! let pins = Pins::new(pac.PORT);
//! let xosc0 = Xosc::from_crystal(
//!     tokens.xosc0,
//!     pins.pa14,
//!     pins.pa15,
//!     8.mhz(),
//! ).enable();
//! ```
//!
//! Next, we want to use a DPLL to multiply the 8 MHz crystal clock up to 100
//! MHz. Once again, we need to decide between two instances of a clock, because
//! each chip has two [`Dpll`]s. This time, however, our decision between
//! [`Dpll0`] and [`Dpll1`] is arbitrary.
//!
//! Also note that, like before, `Dpll0<I>` and `Dpll1<I>` are aliases for
//! `Dpll<Dpll0Id, I>` and `Dpll<Dpll1Id, I>`. [`Dpll0Id`] and [`Dpll1Id`]
//! represent the *identity* of the respective DPLL, while `I` represents the
//! [`Id` type](self#id-types) for the [`Source`] driving the DPLL. In this
//! particular case, we aim to create an instance of `Dpll0<Xosc0Id>`.
//!
//! Only certain clocks can drive the DPLL, so `I` is constrained by the
//! [`DpllSourceId`] trait. Specifically, only the [`Xosc0Id`], [`Xosc1Id`],
//! [`Xosc32kId`] and [`GclkId`] types implement this trait.
//!
//! As before, we access the [`Tokens`] struct and use the corresponding
//! [`DpllToken`] when creating an instance of `Dpll`. However, unlike before,
//! we are creating a new clock-tree relationship that must be tracked by the
//! type system. Because DPLL0 will now consume XOSC0, we must [`Increment`]
//! the [`Enabled`] counter for [`EnabledXosc0`].
//!
//! Thus, to create an instance of `Dpll0<XoscId0>`, we must provide the
//! `EnabledXosc0`, so that its `U0` type parameter can be incremented to `U1`.
//! The `Dpll::from_xosc` method takes ownership of the `EnabledXosc0` and
//! returns it with this modified type parameter.
//!
//! This is the essence of clock safety in this module. Once the counter type
//! has been incremeneted to `U1`, the `EnabledXosc0` can no longer be modified
//! or disabled. All further code can guarantee this invariant is upheld. To
//! modify the `EnabledXosc0`, we would first have to use `Dpll::free_source` to
//! disable the DPLL and [`Decrement`] the counter back to `U0`.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! ```
//! Next, we set the DPLL pre-divider and loop divider. We must pre-divide
//! the XOSC clock down from 8 MHz to 2 MHz, so that it is within the valid
//! input frequency range for the DPLL. Then, we set the DPLL loop divider, so
//! that it will multiply the 2 MHz clock by 50 for a 100 MHz output. We do not
//! need fractional mutiplication here, so the fractional loop divider is zero.
//! Finally, we can enable the `Dpll`, yielding an instance of
//! `EnabledDpll0<XoscId0>`.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! # let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! ```
//!
//! So far, our clock tree looks like this
//!
//! ```text
//! DFLL (48 MHz)
//! └── GCLK0 (48 MHz)
//!     └── Main clock (48 MHz)
//!
//! XOSC0 (8 MHz)
//! └── DPLL0 (100 MHz)
//! ```
//!
//! Our next task will be to swap GCLK0 from the 48 MHz DFLL to the 100 MHz
//! DPLL. To do that, we will use the special [`swap_sources`] method on
//! [`EnabledGclk0`] to change the base clock without disabling GCLK0 or the
//! main clock.
//!
//! This time we will be modifying two [`Enabled`] counters simultaneously.
//! We will [`Decrement`] the [`EnabledDfll`] count from `U1` to `U0`, and
//! we will [`Increment`] the [`EnabledDpll0`] count from `U0` to `U1`.
//! Again, we need to provide both the DFLL and DPLL clocks, so that their
//! type parameters can be changed.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! # let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! # let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! let (gclk0, dfll, dpll0) = clocks.gclk0.swap_sources(clocks.dfll, dpll0);
//! ```
//!
//! At this point, the DFLL is completely unused, so it can be disbled and
//! deconstructed, leaving only the [`DfllToken`].
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! # let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! # let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! # let (gclk0, dfll, dpll0) = clocks.gclk0.swap_sources(clocks.dfll, dpll0);
//! let dfll_token = dfll.disable().free();
//! ```
//!
//! Our clock tree now looks like this:
//!
//! ```text
//! XOSC0 (8 MHz)
//! └── DPLL0 (100 MHz)
//!     └── GCLK0 (100 MHz)
//!         └── Main clock (100 MHz)
//! ```
//!
//! We have the clocks set up, but we're not using them for anything other than
//! the main clock. Our final steps will create SERCOM APB and peripheral
//! clocks and will output the raw GCLK0 to a GPIO pin.
//!
//! To enable the APB clock for SERCOM0, we must access the [`Apb`] bus struct.
//! We provide an [`ApbToken`] to the [`Apb::enable`] method and receive an
//! [`ApbClk`] in return. APB clocks are [1:1 clocks](self#clock-relationships),
//! so the `ApbClk` is not wrapped with [`Enabled`].
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (mut buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! # let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! # let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! # let (gclk0, dfll, dpll0) = clocks.gclk0.swap_sources(clocks.dfll, dpll0);
//! # let dfll_token = dfll.disable().free();
//! let apb_sercom0 = buses.apb.enable(tokens.apbs.sercom0);
//! ```
//!
//! To enable a peripheral channel clock for SERCOM0, we must provide the
//! corresponding [`PclkToken`], as well as the instance of [`EnabledGclk0`], so
//! that its counter can be incremented. The resulting clock has the type
//! `Pclk<Sercom0, Gclk0Id>`.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         pclk::Pclk,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (mut buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! # let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! # let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! # let (gclk0, dfll, dpll0) = clocks.gclk0.swap_sources(clocks.dfll, dpll0);
//! # let dfll_token = dfll.disable().free();
//! # let apb_sercom0 = buses.apb.enable(tokens.apbs.sercom0);
//! let (pclk_sercom0, gclk0) = Pclk::enable(tokens.pclks.sercom0, gclk0);
//! ```
//!
//! Like [`Dpll<D, I>`], [`Pclk<P, I>`] also takes two type parameters. The
//! first represents the corresponding peripheral, while the second is again an
//! [`Id` type](self#id-types) representing the [`Source`] driving the [`Pclk`],
//! which is restricted by the [`PclkSourceId`] trait. Because peripheral
//! channel clocks can only be driven by GCLKs, [`PclkSourceId`] is effectively
//! synonymous with the [`GclkId`] trait.
//!
//! Finally, we would like to output GCLK0 to a GPIO pin. Doing so takes a
//! slightly different approach. This time, we provide a GPIO [`Pin`] to the
//! [`Gclk`], which creates a [`GclkOut`] and [`Increment`]s the consumer count
//! for [`EnabledGclk0`].
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         dpll::Dpll,
//! #         pclk::Pclk,
//! #         xosc::Xosc,
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let (mut buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let pins = Pins::new(pac.PORT);
//! # let xosc0 = Xosc::from_crystal(
//! #     tokens.xosc0,
//! #     pins.pa14,
//! #     pins.pa15,
//! #     8.mhz(),
//! # ).enable();
//! # let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! # let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! # let (gclk0, dfll, dpll0) = clocks.gclk0.swap_sources(clocks.dfll, dpll0);
//! # let dfll_token = dfll.disable().free();
//! # let apb_sercom0 = buses.apb.enable(tokens.apbs.sercom0);
//! # let (pclk_sercom0, gclk0) = Pclk::enable(tokens.pclks.sercom0, gclk0);
//! let (gclk0, gclk0_out) = gclk0.enable_gclk_out(pins.pb14);
//! ```
//!
//! We have arrived at our final, desired clock tree. Putting the whole example
//! together, we get
//!
//! ```no_run
//! use atsamd_hal::{
//!     clock::v2::{
//!         clock_system_at_reset,
//!         dpll::Dpll,
//!         pclk::Pclk,
//!         xosc::Xosc,
//!     },
//!     gpio::Pins,
//!     pac::Peripherals,
//!     time::U32Ext,
//! };
//!
//! let mut pac = Peripherals::take().unwrap();
//! let (mut buses, clocks, tokens) = clock_system_at_reset(
//!     pac.OSCCTRL,
//!     pac.OSC32KCTRL,
//!     pac.GCLK,
//!     pac.MCLK,
//!     &mut pac.NVMCTRL,
//! );
//! let pins = Pins::new(pac.PORT);
//! let xosc0 = Xosc::from_crystal(
//!     tokens.xosc0,
//!     pins.pa14,
//!     pins.pa15,
//!     8.mhz(),
//! )
//! .enable();
//! let (dpll0, xosc0) = Dpll::from_xosc(tokens.dpll0, xosc0);
//! let dpll0 = dpll0.prediv(4).loop_div(50, 0).enable();
//! let (gclk0, dfll, dpll0) = clocks.gclk0.swap_sources(clocks.dfll, dpll0);
//! let dfll_token = dfll.disable().free();
//! let apb_sercom0 = buses.apb.enable(tokens.apbs.sercom0);
//! let (pclk_sercom0, gclk0) = Pclk::enable(tokens.pclks.sercom0, gclk0);
//! let (gclk0, gclk0_out) = gclk0.enable_gclk_out(pins.pb14);
//! ```
//!
//! [PAC]: crate::pac
//! [`OSCCTRL`]: crate::pac::OSCCTRL
//! [`OSC32KCTRL`]: crate::pac::OSC32KCTRL
//! [`GCLK`]: crate::pac::GCLK
//! [`MCLK`]: crate::pac::MCLK
//! [`Peripherals::steal`]: crate::pac::Peripherals::steal
//!
//! [`Ahb`]: ahb::Ahb
//! [`AhbClk`]: ahb::AhbClk
//! [`AhbClk<A>`]: ahb::AhbClk
//! [`AhbClks`]: ahb::AhbClks
//!
//! [`Apb`]: apb::Apb
//! [`Apb::enable`]: apb::Apb::enable
//! [`ApbClk`]: apb::ApbClk
//! [`ApbClk<A>`]: apb::ApbClk
//! [`ApbClk::enable`]: apb::ApbClk::enable
//! [`ApbClks`]: apb::ApbClks
//! [`ApbToken`]: apb::ApbToken
//!
//! [`Dfll`]: dfll::Dfll
//! [`Dfll<M>`]: dfll::Dfll
//! [`DfllId`]: dfll::DfllId
//! [`DfllToken`]: dfll::DfllToken
//! [`EnabledDfll`]: dfll::EnabledDfll
//!
//! [`Dpll`]: dpll::Dpll
//! [`Dpll<D, I>`]: dpll::Dpll
//! [`Dpll0`]: dpll::Dpll0
//! [`Dpll1`]: dpll::Dpll1
//! [`Dpll0Id`]: dpll::Dpll0Id
//! [`Dpll1Id`]: dpll::Dpll1Id
//! [`DpllSourceId`]: dpll::DpllSourceId
//! [`DpllToken`]: dpll::DpllToken
//! [`EnabledDpll0`]: dpll::EnabledDpll0
//!
//! [`Gclk0`]: gclk::Gclk0
//! [`GclkId`]: gclk::GclkId
//! [`EnabledGclk0`]: gclk::EnabledGclk0
//! [`swap_sources`]: gclk::EnabledGclk0::swap_sources
//! [`GclkOut`]: gclk::GclkOut
//!
//! [`OscUlp32kBase`]: osculp32k::OscUlp32kBase
//! [`OscUlp1k`]: osculp32k::OscUlp1k
//! [`OscUlp32k`]: osculp32k::OscUlp32k
//!
//! [`Pclk`]: pclk::Pclk
//! [`Pclk<P, I>`]: pclk::Pclk
//! [`Pclk::enable`]: pclk::Pclk::enable
//! [`Pclk::disable`]: pclk::Pclk::disable
//! [`PclkSourceId`]: pclk::PclkSourceId
//! [`PclkToken`]: pclk::PclkToken
//!
//! [`RtcOsc`]: rtcosc::RtcOsc
//!
//! [`Xosc`]: xosc::Xosc
//! [`Xosc::from_crystal`]: xosc::Xosc::from_crystal
//! [`Xosc::enable`]: xosc::Xosc::enable
//! [`Xosc0`]: xosc::Xosc0
//! [`Xosc0<M>`]: xosc::Xosc0
//! [`Xosc0Id`]: xosc::Xosc0Id
//! [`Xosc1Id`]: xosc::Xosc1Id
//! [`XoscToken`]: xosc::XoscToken
//! [`EnabledXosc0`]: xosc::EnabledXosc0
//! [`EnabledXosc0<M, N>`]: xosc::EnabledXosc0
//! [`CrystalMode`]: xosc::CrystalMode
//! [`ClockMode`]: xosc::ClockMode
//!
//! [`Xosc32kId`]: xosc32k::Xosc32kId
//!
//! [type-level]: crate::typelevel
//! [`Increment`]: crate::typelevel::Increment
//! [`Decrement`]: crate::typelevel::Decrement
//!
//! [`Id`]: Source::Id
//!
//! [`gpio::Pins`]: crate::gpio::Pins
//! [`Pin`]: crate::gpio::Pin
//!
//! [`U1`]: typenum::U1
//! [`Add1`]: typenum::Add1
//! [`Sub1`]: typenum::Sub1
//! [`Unsigned`]: typenum::Unsigned
//!
//! [interior mutability]: https://doc.rust-lang.org/reference/interior-mutability.html

use typenum::U0;

use crate::time::Hertz;
use crate::typelevel::{PrivateDecrement, PrivateIncrement, Sealed};

pub mod ahb;
pub mod apb;
pub mod dfll;
pub mod dpll;
pub mod gclk;
pub mod osculp32k;
pub mod pclk;
pub mod rtcosc;
pub mod types;
pub mod xosc;
pub mod xosc32k;

mod reset;
pub use reset::*;

// `Token` types and memory safety
//
// Each of the PAC [`Peripherals`] is a zero-sized, singleton struct that
// mediates access to the MMIO hardware registers. It is not possible to create
// two instances of any peripheral without causing a run-time panic. These
// structs implement [`Deref`] by conjuring a pointer to the corresponding
// register block, and each register within the block is represented by a
// `vcell::VolatileCell`. Because each register is wrapped in a `VolatileCell`,
// it is safe to both read and write them through shared references. However,
// because a read/modify/write operation is not atomic, the [`Peripherals`]
// structs do not implement [`Sync`].
//
// This is a reasonable approach for the PAC, since it is generated from an
// SVD file. However, it is not the ideal structure for our HAL API. In
// particular, each [`Peripherals`] struct represents an entire peripheral,
// rather than a particular functional unit. In the HAL, we want our API to
// focus on functional units, so we need to define our own abstraction for
// registers, which will involve `unsafe` code.
//
// In the `clock` module, we represent each functional unit with a
// corresponding `Token` type. Just like the [`Peripherals`], each `Token` type
// is meant to be a singleton. However, unlike the PAC, we do not have to
// allow users to create `Token`s directly. Instead, we can have users exchange
// [`Peripherals`] for the `Token`s. Because each PAC struct is a singleton, we
// can guarantee each `Token` will be a singleton as well. With this approach,
// we don't need to implement our own run-time panicking; we simply extend the
// existing guarantees of the PAC.
//
// To implement a memory safe API, we must ensure that all `Token` types access
// mutually exclusive sets of registers. In that way, we guarantee no two
// `Token` types can access the same register. Moreover, in contrast to the PAC
// [`Peripherals`], we can make our `Token`s [`Sync`] if we remove all interior
// mutability and guarantee that writing or modifying a register requires
// ownership or an `&mut` reference.
//
// Thus, our `Token`-based API should be memory safe if we always obey the
// following requirements:
//   - It should be `unsafe` to create a `Token` type unless it is created in
//     exchange for the corresponding PAC peripheral struct.
//   - Each `Token` type should have access to a mutually exclusive set of
//     registers relative to the other `Token`s.
//   - Writing or modifying a register should always require ownership of, or an
//     `&mut` reference to, the corresponding `Token`.
//   - When conjuring references to PAC registers or register blocks, we should
//     *only* use shared, `&` references. There is no need to use exclusive,
//     `&mut` references, because each register is wrapped in a `VolatileCell`.
//     Moreover, using `&mut` references could cause UB, if we accidentally
//     create two simultaneous references to the same register block from
//     different `Tokens`.
//
// [`Peripherals`]: crate::pac::Peripherals
// [`Deref`]: core::ops::Deref

/// Marks [`Enabled`] 1:N producer clocks that can act as a clock source
///
/// Implementers of this type act as producer clocks and feed consumer clocks in
/// the clock tree. All implementors are [`Enabled`], 1:N clocks. The `Id`
/// associated type maps to the corresponding [`Id` type](self#id-types) of the
/// implementer.
///
/// See the documentation on [`Source` clocks](self#acting-as-a-clock-source)
/// for more details.
pub trait Source: Sealed {
    /// Corresponding `Id` type for the implementer
    ///
    /// A given implementer of [`Source`] might have type parameters
    /// representing its configuration. For instance, [`EnabledXosc0<M>`] has a
    /// type parameter to track its [`Mode`]. However, a consumer clock
    /// typically does not care about such configuration. It only needs to
    /// know *which* upstream clock is its [`Source`].
    ///
    /// `Id` types exist to fill this role. They represent the *identity* of a
    /// given clock, regardless of any configuration. This is like the
    /// distinction between a passport and a person. A passport identifies a
    /// person, regardless of changes to their clothes or hair.
    ///
    /// Thus, [`EnabledXosc0<M>`] implements [`Source`] with `Id = `[`Xosc0Id`],
    /// regardless of `M`.
    ///
    /// See the documentation on [`Id` types](self#id-types) for more details.
    ///
    /// [`EnabledXosc0<M>`]: xosc::EnabledXosc0
    /// [`Mode`]: xosc::Mode
    /// [`Xosc0Id`]: xosc::Xosc0Id
    type Id;

    /// Return the frequency of the clock source
    fn freq(&self) -> Hertz;
}

/// An enabled, 1:N clock with a compile-time counter for N
///
/// This struct is a wrapper around other clock types from this module. It
/// represents a clock, `T`, that has been enabled, and it maintains a
/// compile-time counter, `N`, of its consumer clocks in the clock tree.
///
/// Compile-time counting allows the API to restrict when clocks may be modified
/// or disabled. For example, `Enabled` clocks can only be disabled when their
/// counter is [`U0`].
///
/// The type-level counter is implemented using [`Unsigned`] integers from
/// the [`typenum`] crate, and it is modified using the [`Increment`] and
/// [`Decrement`] traits.
///
/// See the [`Enabled` wrapper documentation](self#the-enabled-wrapper) for more
/// details.
///
/// [`EnabledGclk0`]: gclk::EnabledGclk0
/// [`Increment`]: crate::typelevel::Increment
/// [`Decrement`]: crate::typelevel::Decrement
/// [`Unsigned`]: typenum::Unsigned
pub struct Enabled<T, N = U0>(pub(crate) T, N);

impl<T, N> Sealed for Enabled<T, N> {}

impl<T, N: Default> Enabled<T, N> {
    #[inline]
    pub(crate) fn new(t: T) -> Self {
        Enabled(t, N::default())
    }
}

impl<T, N: PrivateIncrement> PrivateIncrement for Enabled<T, N> {
    type Inc = Enabled<T, N::Inc>;

    #[inline]
    fn inc(self) -> Self::Inc {
        Enabled(self.0, self.1.inc())
    }
}

impl<T, N: PrivateDecrement> PrivateDecrement for Enabled<T, N> {
    type Dec = Enabled<T, N::Dec>;

    #[inline]
    fn dec(self) -> Self::Dec {
        Enabled(self.0, self.1.dec())
    }
}