1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
//! # External multipurpose crystal oscillator controller
//!
//! ## Overview
//!
//! The `xosc` module provides access to the two external crystal oscillator
//! controllers (XOSCs) within the `OSCCTRL` peripheral.
//!
//! Each XOSC peripheral can operate in two [`Mode`]s. It can accept an external
//! clock or can interface with an crystal oscillator. In both cases, the clock
//! must be in the 8-48 MHz range.
//!
//! When used with an external clock, only one GPIO [`Pin`] is required, but
//! when used with a crystal oscillator, two GPIO `Pin`s are required. The
//! [`XIn`] `Pin` is used in both `Mode`s, while the [`XOut`] `Pin` is only
//! used in [`CrystalMode`].
//!
//! When operating in [`CrystalMode`], the XOSC peripheral provides several
//! configuration options to increase stability or reduce power consumption of
//! the crystal.
//!
//! The XOSC peripheral can also detect failure of the clock or crystal; and if
//! failure occurs, it can automatically switch to a safe, backup clock derived
//! from the [DFLL].
//!
//! Creating and configuring an [`Xosc`] proceeds according to the principles
//! outlined in the [`clock` module documentation]. It is best shown with an
//! example.
//!
//! ## Example
//!
//! Let's start by using [`clock_system_at_reset`] to access the HAL clocking
//! structs. We'll also need access to the GPIO [`Pins`].
//!
//! ```no_run
//! use atsamd_hal::{
//!     clock::v2::{
//!         clock_system_at_reset,
//!         xosc::{CrystalCurrent, SafeClockDiv, StartUpDelay, Xosc},
//!     },
//!     gpio::Pins,
//!     pac::Peripherals,
//!     time::U32Ext,
//! };
//! let mut pac = Peripherals::take().unwrap();
//! let pins = Pins::new(pac.PORT);
//! let (buses, clocks, tokens) = clock_system_at_reset(
//!     pac.OSCCTRL,
//!     pac.OSC32KCTRL,
//!     pac.GCLK,
//!     pac.MCLK,
//!     &mut pac.NVMCTRL,
//! );
//! ```
//!
//! Next, we can create and configure the [`Xosc`] in one long chain of methods,
//! using the provided builder API. The final call to [`Xosc::enable`] yields an
//! [`EnabledXosc`] that can act as a clock [`Source`] for other clocks in the
//! tree.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         xosc::{CrystalCurrent, SafeClockDiv, StartUpDelay, Xosc},
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! let mut xosc = Xosc::from_crystal(tokens.xosc0, pins.pa14, pins.pa15, 20.mhz())
//!     .current(CrystalCurrent::Medium)
//!     .loop_control(true)
//!     .low_buf_gain(true)
//!     .start_up_delay(StartUpDelay::Delay488us)
//!     .enable();
//! ```
//!
//! We start by calling [`Xosc::from_crystal`], and we provide the corresponding
//! [`XIn`] and [`XOut`] [`Pin`]s, as well as the nominal crystal frequency. We
//! then set the [`CrystalCurrent`] level to `Medium`. The default current level
//! for a 20 MHz signal is actually `High`, but we opt for a lower current under
//! the assumption that our crystal's capacitive load is small. Next, we turn on
//! automatic loop control, which should save power, but we also set
//! `LOWBUFGAIN` to `1`. Counterintuitively, this actually _increases_ the
//! crystal amplitude, which increases power consumption, but it also improves
//! stability. We then apply a 488 μs start up delay, to allow the clock to
//! stabilize before it is applied to any logic. Finally, we enable the `Xosc`.
//!
//! Next, we wait until the `Xosc` is stable and ready to be used as a clock
//! [`Source`].
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         xosc::{CrystalCurrent, SafeClockDiv, StartUpDelay, Xosc},
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let mut xosc = Xosc::from_crystal(tokens.xosc0, pins.pa14, pins.pa15, 20.mhz())
//! #     .current(CrystalCurrent::Medium)
//! #     .loop_control(true)
//! #     .low_buf_gain(true)
//! #     .start_up_delay(StartUpDelay::Delay488us)
//! #     .enable();
//! while !xosc.is_ready() {}
//! ```
//!
//! Once the clock is stable, we can also enable failure detection. To do so, we
//! must provide the [`EnabledDfll`] to act as the backup safe clock. We can
//! also select a divider for the safe clock, so that it loosely matches the
//! `Xosc` frequency. In thise case, we divide the 48 MHz [`Dfll`] down to
//! 24 MHz, which is the closest option to 20 MHz.
//!
//! ```no_run
//! # use atsamd_hal::{
//! #     clock::v2::{
//! #         clock_system_at_reset,
//! #         xosc::{CrystalCurrent, SafeClockDiv, StartUpDelay, Xosc},
//! #     },
//! #     gpio::Pins,
//! #     pac::Peripherals,
//! #     time::U32Ext,
//! # };
//! # let mut pac = Peripherals::take().unwrap();
//! # let pins = Pins::new(pac.PORT);
//! # let (buses, clocks, tokens) = clock_system_at_reset(
//! #     pac.OSCCTRL,
//! #     pac.OSC32KCTRL,
//! #     pac.GCLK,
//! #     pac.MCLK,
//! #     &mut pac.NVMCTRL,
//! # );
//! # let mut xosc = Xosc::from_crystal(tokens.xosc0, pins.pa14, pins.pa15, 20.mhz())
//! #     .current(CrystalCurrent::Medium)
//! #     .loop_control(true)
//! #     .low_buf_gain(true)
//! #     .start_up_delay(StartUpDelay::Delay488us)
//! #     .enable();
//! # while !xosc.is_ready() {}
//! xosc.enable_failure_detection(clocks.dfll, SafeClockDiv::Div2);
//! ```
//!
//! In the event of a clock failure, the [`Xosc`] would be automatically
//! switched to the safe clock, and [`EnabledXosc::has_failed`] would return
//! true. If the problem were later resolved, the `Xosc` could be switched back
//! to the crystal with [`EnabledXosc::switch_back`].
//!
//! The complete example is provided below.
//!
//! ```no_run
//! use atsamd_hal::{
//!     clock::v2::{
//!         clock_system_at_reset,
//!         xosc::{CrystalCurrent, SafeClockDiv, StartUpDelay, Xosc},
//!     },
//!     gpio::Pins,
//!     pac::Peripherals,
//!     time::U32Ext,
//! };
//! let mut pac = Peripherals::take().unwrap();
//! let pins = Pins::new(pac.PORT);
//! let (buses, clocks, tokens) = clock_system_at_reset(
//!     pac.OSCCTRL,
//!     pac.OSC32KCTRL,
//!     pac.GCLK,
//!     pac.MCLK,
//!     &mut pac.NVMCTRL,
//! );
//! let mut xosc = Xosc::from_crystal(tokens.xosc0, pins.pa14, pins.pa15, 20.mhz())
//!     .current(CrystalCurrent::Medium)
//!     .loop_control(true)
//!     .low_buf_gain(true)
//!     .start_up_delay(StartUpDelay::Delay488us)
//!     .enable();
//! while !xosc.is_ready() {}
//! xosc.enable_failure_detection(clocks.dfll, SafeClockDiv::Div2);
//! ```
//!
//! [`Pins`]: crate::gpio::Pins
//! [`clock` module documentation]: super
//! [`clock_system_at_reset`]: super::clock_system_at_reset
//! [DFLL]: super::dfll
//! [`Dfll`]: super::dfll::Dfll
//! [`EnabledDfll`]: super::dfll::EnabledDfll

use core::marker::PhantomData;

use typenum::U0;

use crate::pac::oscctrl::{self, XOSCCTRL};

use crate::gpio::{FloatingDisabled, Pin, PinId, PA14, PA15, PB22, PB23};
use crate::time::Hertz;
use crate::typelevel::{Decrement, Increment, Sealed};

use super::dfll::DfllId;
use super::{Enabled, Source};

//==============================================================================
// XoscToken
//==============================================================================

/// Singleton token that can be exchanged for an [`Xosc`]
///
/// As explained in the [`clock` module documentation](super), instances of
/// various `Token` types can be exchanged for actual clock types. They
/// typically represent clocks that are disabled at power-on reset.
///
/// [`XoscToken`]s are no different. Both [`Xosc`]s are disabled at power-on
/// reset. To use an [`Xosc`], you must first exchange the token for an actual
/// clock with [`Xosc::from_clock`] or [`Xosc::from_crystal`].
///
/// [`XoscToken`] is generic over the [`XoscId`], where each corresponding token
/// represents one of the two respective [`Xosc`]s.
pub struct XoscToken<X: XoscId> {
    id: PhantomData<X>,
}

impl<X: XoscId> XoscToken<X> {
    /// Create a new instance of [`XoscToken`]
    ///
    /// # Safety
    ///
    /// Each `XoscToken`s is a singleton. There must never be two simulatenous
    /// instances with the same [`XoscId`]. See the notes on `Token` types and
    /// memory safety in the root of the `clock` module for more details.
    #[inline]
    pub(super) unsafe fn new() -> Self {
        Self { id: PhantomData }
    }

    /// Return a reference to the corresponding XOSCCTRL register
    #[inline]
    fn xoscctrl(&self) -> &XOSCCTRL {
        // Safety: Each `XoscToken` only has access to a mutually exclusive set
        // of registers for the corresponding `XoscId`, and we use a shared
        // reference to the register block. See the notes on `Token` types and
        // memory safety in the root of the `clock` module for more details.
        unsafe { &(*crate::pac::OSCCTRL::PTR).xoscctrl[X::NUM] }
    }

    /// Read the STATUS register
    #[inline]
    fn status(&self) -> oscctrl::status::R {
        // Safety: We are only reading from the `STATUS` register, so there is
        // no risk of memory corruption.
        unsafe { (*crate::pac::OSCCTRL::PTR).status.read() }
    }

    /// Check whether the XOSC is stable and ready
    #[inline]
    fn is_ready(&self) -> bool {
        let mask = 1 << X::NUM;
        self.status().bits() & mask != 0
    }

    /// Check whether the XOSC has triggered failure detection
    #[inline]
    fn has_failed(&self) -> bool {
        let mask = 1 << (X::NUM + 2);
        self.status().bits() & mask != 0
    }

    /// Check whether the XOSC has been switched to the safe clock
    #[inline]
    fn is_switched(&self) -> bool {
        let mask = 1 << (X::NUM + 4);
        self.status().bits() & mask != 0
    }

    /// Reset the XOSCCTRL register
    #[inline]
    fn reset(&self) {
        self.xoscctrl().reset();
    }

    /// Switch from the safe clock back to the XOSC clock/oscillator
    ///
    /// This bit is cleared by the hardware after successfully switching back
    #[inline]
    fn switch_back(&mut self) {
        self.xoscctrl().modify(|_, w| w.swben().set_bit());
    }

    /// Enable clock failure detection and set the safe clock divider
    #[inline]
    fn enable_failure_detection(&mut self, div: SafeClockDiv) {
        // Safety: The divider is guaranteed to be in the valid range 0..16.
        // The PAC is wrong here. It seems to think the field is 4 bits wide and
        // the set of valid values is only 0..8. The `bits` method should really
        // be safe here, just like it is for the `STARTUP` field.
        self.xoscctrl().modify(|_, w| unsafe {
            w.cfdpresc().bits(div as u8);
            w.cfden().set_bit()
        });
    }

    /// Disable clock failure detection
    #[inline]
    fn disable_failure_detection(&mut self) {
        self.xoscctrl().modify(|_, w| w.cfden().clear_bit());
    }

    /// Set most of the fields in the XOSCCTRL register
    #[inline]
    fn set_xoscctrl(&mut self, settings: Settings) {
        let xtalen = settings.mode == DynMode::CrystalMode;
        // Safety: The `IMULT` and `IPTAT` values come from the
        // `CrystalCurrent`, so they are guaranteed to be valid.
        self.xoscctrl().modify(|_, w| unsafe {
            w.startup().bits(settings.start_up as u8);
            w.enalc().bit(settings.loop_control);
            w.imult().bits(settings.current.imult());
            w.iptat().bits(settings.current.iptat());
            w.lowbufgain().bit(settings.low_buf_gain);
            w.ondemand().bit(settings.on_demand);
            w.runstdby().bit(settings.run_standby);
            w.xtalen().bit(xtalen)
        });
    }

    /// Enable the XOSC
    #[inline]
    fn enable(&mut self) {
        self.xoscctrl().modify(|_, w| w.enable().set_bit());
    }

    /// Disable the XOSC
    #[inline]
    fn disable(&mut self) {
        self.xoscctrl().modify(|_, w| w.enable().clear_bit());
    }
}

//==============================================================================
// Settings
//==============================================================================

// Collection of XOSCCTRL register fields
//
// All of these fields are set in a single write to XOSCCTRL during the call to
// [`Xosc::enable`]. The remaining fields are only modified after it has been
// enabled.
#[derive(Clone, Copy)]
struct Settings {
    start_up: StartUpDelay,
    loop_control: bool,
    current: CrystalCurrent,
    low_buf_gain: bool,
    on_demand: bool,
    run_standby: bool,
    mode: DynMode,
}

//==============================================================================
// XoscId
//==============================================================================

/// Type-level enum identifying one of two possible [`Xosc`]s
///
/// The types implementing this trait, i.e. [`Xosc0Id`] and [`Xosc1Id`], are
/// type-level variants of `XoscId`, and they identify one of two possible
/// external crystal oscillators.
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub trait XoscId: Sealed {
    /// Corresponding numeric index
    const NUM: usize;
    /// Corresponding XIN [`PinId`]
    type XIn: PinId;
    /// Corresponding XOUT [`PinId`]
    type XOut: PinId;
}

/// Type-level variant of [`XoscId`] representing the identity of XOSC0
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub enum Xosc0Id {}

impl Sealed for Xosc0Id {}

impl XoscId for Xosc0Id {
    const NUM: usize = 0;
    type XIn = PA14;
    type XOut = PA15;
}

/// Type-level variant of [`XoscId`] representing the identity of XOSC1
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub enum Xosc1Id {}

impl Sealed for Xosc1Id {}

impl XoscId for Xosc1Id {
    const NUM: usize = 1;
    type XIn = PB22;
    type XOut = PB23;
}

//==============================================================================
// XIn & XOut
//==============================================================================

/// Type alias for the [`Xosc`] input [`Pin`]
pub type XIn<X> = Pin<<X as XoscId>::XIn, FloatingDisabled>;

/// Type alias for the [`Xosc`] output [`Pin`]
pub type XOut<X> = Pin<<X as XoscId>::XOut, FloatingDisabled>;

//==============================================================================
// SafeClockDiv
//==============================================================================

/// Division factor for the safe clock prescaler
///
/// If an [`Xosc`] clock failure is detected, the hardware will switch to a safe
/// clock derived from the [`Dfll`]. This enum sets the divider between the
/// 48 MHz DFLL and the safe clock frequency. The divider can be any value of
/// 2^N, with N in the range `0..16`.
///
///[`Dfll`]: super::dfll::Dfll
#[repr(u8)]
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum SafeClockDiv {
    #[default]
    Div1,
    Div2,
    Div4,
    Div8,
    Div16,
    Div32,
    Div64,
    Div128,
    Div256,
    Div512,
    Div1024,
    Div2048,
    Div4096,
    Div8192,
    Div16384,
    Div32768,
}

//==============================================================================
// StartUpDelay
//==============================================================================

/// Start up delay before continuous [`Xosc`] monitoring takes effect
///
/// After a hard reset or waking from sleep, the [`Xosc`] output will remained
/// masked for the start up period, to ensure an unstable clock is not
/// propagated into the digital logic.
///
/// The start up delay is counted using the [`OscUlp32k`] clock, and the delay
/// is equal to 2^N clock cycles, where N is selectable in the range `0..16`.
///
/// [`OscUlp32k`]: super::osculp32k::OscUlp32k
#[repr(u8)]
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum StartUpDelay {
    #[default]
    Delay31us,
    Delay62us,
    Delay122us,
    Delay244us,
    Delay488us,
    Delay977us,
    Delay2ms,
    Delay4ms,
    Delay8ms,
    Delay16ms,
    Delay31ms,
    Delay63ms,
    Delay125ms,
    Delay250ms,
    Delay500ms,
    Delay1s,
}

//==============================================================================
// CrystalCurrent
//==============================================================================

/// Crystal current level
///
/// This struct represents an abstraction over the datasheet table for the
/// `IMULT` and `IPTAT` register fields, which control the current used when an
/// [`Xosc`] is in [`CrystalMode`]
///
/// The variants of this enum are not named according to the explicit frequency
/// range provided in the datasheet. While the datasheet recommends settings for
/// each frequency range, it also acknowledges some flexibility in that choice.
/// Specifically, it notes that users can save power by selecting the next-lower
/// frequency range if the capacitive load is small.
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum CrystalCurrent {
    /// Used only in [`ClockMode`] to represent the default register values
    #[default]
    Zero,
    /// Typically used for 8 MHz oscillators
    Low,
    /// Typically used for 8-16 MHz oscillators
    Medium,
    /// Typically used for 16-24 MHz oscillators
    High,
    /// Typically used for 24-48 MHz oscillators
    ExtraHigh,
}

impl CrystalCurrent {
    #[inline]
    fn imult(&self) -> u8 {
        match self {
            Self::Zero => 0,
            Self::Low => 3,
            Self::Medium => 4,
            Self::High => 5,
            Self::ExtraHigh => 6,
        }
    }

    #[inline]
    fn iptat(&self) -> u8 {
        match self {
            Self::Zero => 0,
            Self::Low => 2,
            Self::Medium => 3,
            Self::High => 3,
            Self::ExtraHigh => 3,
        }
    }
}

//==============================================================================
// DynMode
//==============================================================================

/// Value-level enum identifying one of two possible [`Xosc`] operating modes
///
/// An [`Xosc`] can be sourced from either an external clock or crystal
/// oscillator. The variants of this enum identify one of these two possible
/// operating modes.
///
/// `DynMode` is the value-level equivalent of [`Mode`].
#[derive(Clone, Copy, Default, PartialEq, Eq)]
pub enum DynMode {
    #[default]
    ClockMode,
    CrystalMode,
}

//==============================================================================
// Mode
//==============================================================================

/// Type-level `enum` for the [`Xosc`] operating mode
///
/// An [`Xosc`] can be sourced from either an external clock or a cyrstal
/// oscillator. This type-level `enum` provides two type-level variants,
/// [`ClockMode`] and [`CrystalMode`], representing these operating modes.
///
/// `Mode` is the type-level equivalent of [`DynMode`]. See the documentation on
/// [type-level programming] and specifically [type-level enums] for more
/// details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub trait Mode: Sealed {
    /// Corresponding variant of [`DynMode`]
    const DYN: DynMode;
    #[doc(hidden)]
    type Pins<X: XoscId>;
}

//==============================================================================
// ClockMode
//==============================================================================

/// Type-level variant of the [`Xosc`] operating [`Mode`]
///
/// Represents the [`Xosc`] configured to use an externally provided clock.
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub enum ClockMode {}

impl Sealed for ClockMode {}

impl Mode for ClockMode {
    const DYN: DynMode = DynMode::ClockMode;
    type Pins<X: XoscId> = XIn<X>;
}

//==============================================================================
// CrystalMode
//==============================================================================

/// Type-level variant of the [`Xosc`] operating [`Mode`]
///
/// Represents the [`Xosc`] configured to use an external crystal oscillator.
///
/// See the documentation on [type-level programming] and specifically
/// [type-level enums] for more details.
///
/// [type-level programming]: crate::typelevel
/// [type-level enums]: crate::typelevel#type-level-enums
pub enum CrystalMode {}

impl Sealed for CrystalMode {}

impl Mode for CrystalMode {
    const DYN: DynMode = DynMode::CrystalMode;
    type Pins<X: XoscId> = (XIn<X>, XOut<X>);
}

//==============================================================================
// Xosc
//==============================================================================

/// An external multipurpose crystal oscillator controller
///
/// An `Xosc` interfaces with either an external clock or external crystal
/// oscillator and delivers the resulting clock to the rest of the clock system.
///
/// The type parameter `X` is a [`XoscId`] that determines which of the two
/// instances this `Xosc` represents ([`Xosc0`] or [`Xosc1`]). The type
/// parameter `M` represents the operating [`Mode`], either [`ClockMode`] or
/// [`CrystalMode`].
///
/// On its own, an instance of `Xosc` does not represent an enabled XOSC.
/// Instead, it must first be wrapped with [`Enabled`], which implements
/// compile-time safety of the clock tree.
///
/// Because the terminal call to [`enable`] consumes the `Xosc` and returns an
/// [`EnabledXosc`], the remaining API uses the builder pattern, where each
/// method takes and returns `self` by value, allowing them to be easily
/// chained.
///
/// See the [module-level documentation](self) for an example of creating,
/// configuring and using an `Xosc`.
///
/// [`enable`]: Xosc::enable
pub struct Xosc<X, M>
where
    X: XoscId,
    M: Mode,
{
    token: XoscToken<X>,
    pins: M::Pins<X>,
    freq: Hertz,
    settings: Settings,
}

/// Type alias for the corresponding [`Xosc`]
pub type Xosc0<M> = Xosc<Xosc0Id, M>;

/// Type alias for the corresponding [`Xosc`]
pub type Xosc1<M> = Xosc<Xosc1Id, M>;

/// An [`Enabled`] [`Xosc`]
///
/// As described in the [`clock` module documentation](super), the [`Enabled`]
/// wrapper implements compile-time clock tree safety by tracking the number of
/// consumer clocks and restricting access to the underlying [`Xosc`] to prevent
/// modification while in use.
///
/// As with [`Enabled`], the default value for `N` is `U0`; if left unspecified,
/// the counter is assumed to be zero.
pub type EnabledXosc<X, M, N = U0> = Enabled<Xosc<X, M>, N>;

/// Type alias for the corresponding [`EnabledXosc`]
pub type EnabledXosc0<M, N = U0> = EnabledXosc<Xosc0Id, M, N>;

/// Type alias for the corresponding [`EnabledXosc`]
pub type EnabledXosc1<M, N = U0> = EnabledXosc<Xosc1Id, M, N>;

impl<X: XoscId> Xosc<X, ClockMode> {
    /// Create an [`Xosc`] from an external clock, taking ownership of the
    /// [`XIn`] [`Pin`]
    ///
    /// Creating a [`Xosc`] does not modify any of the hardware registers. It
    /// only creates a struct to track the configuration. The configuration data
    /// is stored until the user calls [`enable`]. At that point, all of the
    /// registers are written according to the initialization procedures
    /// specified in the datasheet, and an [`EnabledXosc`] is returned. The
    /// `Xosc` is not active or useful until that point.
    ///
    /// [`enable`]: Xosc::enable
    #[inline]
    pub fn from_clock(token: XoscToken<X>, xin: impl Into<XIn<X>>, freq: impl Into<Hertz>) -> Self {
        let pins = xin.into();
        Xosc::new(token, pins, freq.into())
    }

    /// Consume the [`Xosc`] and release the [`XoscToken`] and [`XIn`] [`Pin`]
    #[inline]
    pub fn free(self) -> (XoscToken<X>, XIn<X>) {
        (self.token, self.pins)
    }
}

impl<X: XoscId> Xosc<X, CrystalMode> {
    /// Create an [`Xosc`] from an external crystal oscillator, taking ownership
    /// of the [`XIn`] and [`XOut`] [`Pin`]s.
    ///
    /// Creating a [`Xosc`] does not modify any of the hardware registers. It
    /// only creates a struct to track the configuration. The configuration data
    /// is stored until the user calls [`enable`]. At that point, all of the
    /// registers are written according to the initialization procedures
    /// specified in the datasheet, and an [`EnabledXosc`] is returned. The
    /// `Xosc` is not active or useful until that point.
    ///
    /// [`enable`]: Xosc::enable
    #[inline]
    pub fn from_crystal(
        token: XoscToken<X>,
        xin: impl Into<XIn<X>>,
        xout: impl Into<XOut<X>>,
        freq: impl Into<Hertz>,
    ) -> Self {
        let pins = (xin.into(), xout.into());
        Xosc::new(token, pins, freq.into())
    }

    /// Consume the [`Xosc`] and release the [`XoscToken`], [`XIn`] and [`XOut`]
    /// [`Pin`]s
    #[inline]
    pub fn free(self) -> (XoscToken<X>, XIn<X>, XOut<X>) {
        let (xin, xout) = self.pins;
        (self.token, xin, xout)
    }

    /// Set the [`CrystalCurrent`] drive strength
    #[inline]
    pub fn current(mut self, current: CrystalCurrent) -> Self {
        self.settings.current = current;
        self
    }

    /// Toggle automatic loop control
    ///
    /// If enabled, the hardware will automatically adjust the oscillator
    /// amplitude. In most cases, this will lower power consumption.
    #[inline]
    pub fn loop_control(mut self, loop_control: bool) -> Self {
        self.settings.loop_control = loop_control;
        self
    }

    /// Modify the oscillator amplitude when automatic loop control is enabled
    ///
    /// The datasheet name for this setting is very misleading. When automatic
    /// loop control is enabled, setting the `LOWBUFGAIN` field to `1` will
    /// _increase_ the oscillator amplitude by a factor of appoximately 2. This
    /// can help solve stability issues.
    #[inline]
    pub fn low_buf_gain(mut self, low_buf_gain: bool) -> Self {
        self.settings.low_buf_gain = low_buf_gain;
        self
    }
}

impl<X, M> Xosc<X, M>
where
    X: XoscId,
    M: Mode,
{
    #[inline]
    fn new(token: XoscToken<X>, pins: M::Pins<X>, freq: Hertz) -> Self {
        let current = match freq.0 {
            8_000_000 => CrystalCurrent::Low,
            8_000_001..=16_000_000 => CrystalCurrent::Medium,
            16_000_001..=24_000_000 => CrystalCurrent::High,
            24_000_001..=48_000_000 => CrystalCurrent::ExtraHigh,
            _ => panic!("The XOSC input frequency must be 8-48 MHz"),
        };
        let current = match M::DYN {
            DynMode::ClockMode => CrystalCurrent::Zero,
            DynMode::CrystalMode => current,
        };
        let settings = Settings {
            start_up: StartUpDelay::Delay31us,
            loop_control: false,
            current,
            low_buf_gain: false,
            on_demand: true,
            run_standby: false,
            mode: M::DYN,
        };
        Self {
            token,
            pins,
            freq,
            settings,
        }
    }

    /// Return the clock or crystal frequency
    #[inline]
    pub fn freq(&self) -> Hertz {
        self.freq
    }

    /// Set the start up delay before the [`Xosc`] is unmasked and continuously
    /// monitored
    ///
    /// During the start up period, the [`Xosc`] is masked to prevent clock
    /// instability from propagating to the digital logic. During this time,
    /// clock failure detection is disabled.
    #[inline]
    pub fn start_up_delay(mut self, delay: StartUpDelay) -> Self {
        self.settings.start_up = delay;
        self
    }

    /// Control the [`Xosc`] on-demand behavior
    ///
    /// When the on-demand is enabled, the [`Xosc`] will only run in Idle or
    /// Standby sleep modes if it is requested by a peripheral. Otherwise, its
    /// behavior is dependent on the run-standby setting.
    #[inline]
    pub fn on_demand(mut self, on_demand: bool) -> Self {
        self.settings.on_demand = on_demand;
        self
    }

    /// Control the [`Xosc`] behavior in Standby sleep mode
    ///
    /// When `RUNSTDBY` is disabled, the [`Xosc`] will never run in Standby
    /// sleep mode unless `ONDEMAND` is enabled and the `Xosc` is requested by a
    /// peripheral. When `RUNSTDBY` is enabled, the `Xosc` will run in Standby
    /// sleep mode, but it can still be disabled if `ONDEMAND` is enabled and
    /// the `Xosc` is not requested.
    #[inline]
    pub fn run_standby(mut self, run_standby: bool) -> Self {
        self.settings.run_standby = run_standby;
        self
    }

    /// Enable the [`Xosc`], so that it can be used as a clock [`Source`]
    ///
    /// As mentioned when creating a new `Xosc`, no hardware registers are
    /// actually modified until this call. Rather, the desired configuration is
    /// stored internally, and the `Xosc` is initialized and configured here
    /// according to the datasheet.
    ///
    /// The returned value is an [`EnabledXosc`] that can be used as a clock
    /// [`Source`] for other clocks.
    #[inline]
    pub fn enable(mut self) -> EnabledXosc<X, M> {
        self.token.reset();
        self.token.set_xoscctrl(self.settings);
        self.token.enable();
        Enabled::new(self)
    }
}

impl<X, M> EnabledXosc<X, M>
where
    X: XoscId,
    M: Mode,
{
    /// Disable the [`Xosc`]
    ///
    /// This method is only implemented for `N = U0`, which means the clock can
    /// only be disabled when no other clocks consume this [`Xosc`].
    #[inline]
    pub fn disable(mut self) -> Xosc<X, M> {
        self.0.token.disable();
        self.0
    }
}

impl<X, M, N> EnabledXosc<X, M, N>
where
    X: XoscId,
    M: Mode,
{
    /// Check whether the [`Xosc`] is stable and ready to be used as a clock
    /// [`Source`]
    #[inline]
    pub fn is_ready(&self) -> bool {
        self.0.token.is_ready()
    }

    /// Enable continuous monitoring of the [`Xosc`] for clock failure
    ///
    /// Failure detection will continuously monitor the [`Xosc`] to verify it is
    /// still running. In the event of a failure, the `Xosc` output will be
    /// switched to the "safe clock".
    ///
    /// The safe clock is derived from the DFLL, which runs at 48 MHz. The XOSC
    /// peripheral provides a prescaler to divide down the 48 MHz DFLL to better
    /// match the clock it replaces. The prescaler division factor can be any
    /// power of two, `2^N`, with `N` in the range `0..16`.
    ///
    /// For example, if the [`Xosc`] input frequency is 16 MHz, a reasonable
    /// divider would be 4, becuase the safe clock frequency would be 12 MHz,
    /// which is closest to 16 MHz.
    ///
    /// Note that clock failure is triggered when four safe clock periods pass
    /// without seeing a rising & falling edge pair on the XOSC clock. Once
    /// failure is detected, the corresponding bit in the `STATUS` register will
    /// go high and an interrupt will be triggered.
    ///
    /// If the external clock can be fixed, the `Xosc` can be switched back to
    /// it using [`EnabledXosc::switch_back`].
    ///
    /// Because the safe clock makes use of the DFLL, the `Xosc` must register
    /// as a consumer of the [`EnabledDfll`] and [`Increment`] its counter.
    ///
    /// [`EnabledDfll`]: super::dfll::EnabledDfll
    #[inline]
    pub fn enable_failure_detection<S>(&mut self, dfll: S, div: SafeClockDiv) -> S::Inc
    where
        S: Source<Id = DfllId> + Increment,
    {
        self.0.token.enable_failure_detection(div);
        dfll.inc()
    }

    /// Check whether the [`Xosc`] has triggered clock failure detection
    ///
    /// Failure detection must be enabled for this to return `true`. Failure is
    /// triggered when four safe clock periods pass without seeing a rising &
    /// falling edge pair on the XOSC clock.
    ///
    /// See [`EnabledXosc::enable_failure_detection`] for more details.
    #[inline]
    pub fn has_failed(&self) -> bool {
        self.0.token.has_failed()
    }

    /// Check whether the [`Xosc`] has been switched to the safe clock
    ///
    /// Returns `true` if the [`Xosc`] has been switched to the safe clock. This
    /// will only occur if clock failure detection is enabled.
    #[inline]
    pub fn is_switched(&self) -> bool {
        self.0.token.is_switched()
    }

    /// Attempt to switch from the safe clock back to the external clock
    ///
    /// This function will set the switch back bit (`SWBEN`) in the `XOSCCTRL`
    /// register. Once the hardware has successfully switched back, this bit
    /// will be automatically cleared.
    ///
    /// Users can check whether switching back was successful by checking the
    /// `STATUS` register with [`EnabledXosc::is_switched`].
    #[inline]
    pub fn switch_back(&mut self) {
        self.0.token.switch_back()
    }

    /// Disable continuous monitoring of the [`Xosc`] for clock failure
    ///
    /// Once failure monitoring is disabled, the DFLL is no longer used as the
    /// safe clock, so the [`EnabledDfll`] counter can be [`Decrement`]ed.
    ///
    /// [`EnabledDfll`]: super::dfll::EnabledDfll
    #[inline]
    pub fn disable_failure_detection<S>(&mut self, dfll: S) -> S::Dec
    where
        S: Source<Id = DfllId> + Decrement,
    {
        self.0.token.disable_failure_detection();
        dfll.dec()
    }
}

//==============================================================================
// Source
//==============================================================================

impl<X, M, N> Source for EnabledXosc<X, M, N>
where
    X: XoscId,
    M: Mode,
{
    type Id = X;

    #[inline]
    fn freq(&self) -> Hertz {
        self.0.freq()
    }
}