1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
//! Module supporting type-level programming
//!
//! # Introduction
//!
//! Embedded software is often difficult to debug, so there is a strong
//! motivation to catch as many bugs as possible at compile-time. However, the
//! performance requirements of embedded software also make it difficult to
//! justify changes that impose additional overhead in terms of size or speed.
//! Ideally, we would like to add as many compile-time checks as possible, while
//! also producing the fewest possible assembly instructions.
//!
//! The Rust type system can help accomplish this goal. By expressing software
//! constraints within the type system, developers can enforce invariants at
//! compile-time.
//!
//! Sometimes this is done using Rust macros. However, that approach can produce
//! code that is difficult to read and understand. Moreover, macro-generated
//! code can only be extended by *more* macros, which further spreads the
//! problem. In `atsamd-hal` specifically, issue
//! [#214](https://github.com/atsamd-rs/atsamd/issues/214) discussed the extent
//! to which macros were once used in the repository.
//!
//! Alternatively, many of the same goals can be accomplished with the Rust
//! type & trait system directly, which is quite powerful. In fact, it is
//! [turing complete](https://sdleffler.github.io/RustTypeSystemTuringComplete/).
//! By expressing our invariants entirely within the type system, we can encode
//! the desired compile-time checks in a form that is easier to read, understand
//! and document.
//!
//! This module documents some of the type-level programming techniques used
//! throughout this HAL, and it contains a few items used to implement them.
//!
//! ## Contents
//!
//! - [Basics of type-level programming](#basics-of-type-level-programming)
//! - [Type-level enums](#type-level-enums)
//! - [Type classes](#type-classes)
//! - [Type-level containers](#type-level-containers)
//! - [Type-level functions](#type-level-functions)
//! - [`OptionalKind` trait pattern](#optionalkind-trait-pattern)
//! - [`AnyKind` trait pattern](#anykind-trait-pattern)
//! - [Defining an `AnyKind` trait](#defining-an-anykind-trait)
//! - [Using an `AnyKind` trait](#using-an-anykind-trait)
//!
//! # Basics of type-level programming
//!
//! Type-level programming aims to execute a form of compile-time computation.
//! But to perform such computation, we need to map our traditional notions of
//! programming to the Rust type system.
//!
//! In normal Rust, individual values are grouped or categorized into types. For
//! example, `0`, `1`, `2`, etc. are all members of the `usize` type. Similarly,
//! `Enum::A` and `Enum::B` are members of the `Enum` type, defined as
//!
//! ```
//! enum Enum { A, B }
//! ```
//!
//! We use composite types and containers to create more complex data
//! structures, and we use functions to map between values.
//!
//! All of these concepts can also be expressed within the Rust type system.
//! However, in this case, types are grouped and categorized into traits. For
//! instance, the [`typenum`](https://docs.https://docs.rs/typenum/1.12.0/typenum/1.13https://docs.rs/typenum/1.12.0/typenum/index.html)
//! crate provides the types `U0`, `U1`, `U2`, etc., which are all members of
//! the `Unsigned` trait. Similarly, the following sections will illustrate how
//! to define type-level enums, containers and functions.
//!
//! ## Type-level enums
//!
//! Type-level enums are one of the foundational concepts of type-level
//! programming used in this HAL.
//!
//! At the value-level, a typical Rust enum represents some set of variants that
//! can be assigned to a particular variable. Similarly, a type-level enum
//! represents some set of types that can be assigned to a particular type
//! parameter.
//!
//! To lift an enum from the value level to the type level, you typically map
//! the enum variants to types and the enum itself to a trait. For instance, the
//! value-level enum
//!
//! ```
//! enum Enum {
//! A,
//! B,
//! }
//! ```
//!
//! would be mapped to the type level like so.
//!
//! ```
//! trait Enum {}
//!
//! enum A {}
//! enum B {}
//!
//! impl Enum for A {}
//! impl Enum for B {}
//! ```
//!
//! At the value level, the variants `A` and `B` are grouped by the `Enum` type,
//! while at the type level, the types `A` and `B` are grouped by the `Enum`
//! trait.
//!
//! ## Type classes
//!
//! At the value-level, a type restricts the possible values that can be taken
//! by some free variable. While at the type-level, a trait bound restricts the
//! possible types that can be taken by some free type parameter. In effect,
//! trait bounds can be used to create a kind of meta-type, or type class. The
//! type-level enums in the previous section represent the most primitive
//! application of the concept, but type classes can take other forms. The
//! `OptionalKind` and `AnyKind` trait patterns discussed below are more
//! advanced applications of the same concept.
//!
//! ## Type-level containers
//!
//! To represent more complex relationships, we need a way to form composite
//! data structures at the type level.
//!
//! At the value level, a container holds an instance of a particular type. The
//! exact value of that instance is usually not known to the author, it is only
//! known at run-time.
//!
//! At the type level, we don't have the same notion of "run-time", but we do
//! have two different notions of "compile-time" that form a similar
//! relationship. There is compile time for the HAL authors, and there is a
//! separate compile-time for the HAL users. We want to create a type-level
//! container where the exact type is not known at author-time, but it is known
//! at user-time.
//!
//! For example, take the following, value-level container struct. It contains
//! two fields, `a` and `b`, of different types, `EnumOne` and `EnumTwo`.
//!
//! ```
//! struct Container {
//! a: EnumOne,
//! b: EnumTwo,
//! }
//! ```
//!
//! We can create an instance of this container with specific values.
//!
//! ```
//! let x = Container { a: EnumOne::VariantX, b: EnumTwo::VariantY };
//! ```
//!
//! Next, suppose we had already translated `EnumOne` and `EnumTwo` to the type
//! level using the technique in the previous section. If we wanted to create a
//! similar, composite data structure at the type level, we could use type
//! parameters in place of struct fields to represent the unknown types.
//!
//! ```
//! struct Container<A, B>
//! where
//! A: EnumOne,
//! B: EnumTwo,
//! {
//! a: PhantomData<A>,
//! b: PhantomData<B>,
//! }
//! ```
//!
//! And we could create an instance of this container with specific types.
//!
//! ```
//! type X = Container<VariantX, VariantY>;
//! ```
//!
//! You might notice the use of `PhantomData` in the definition of the
//! type-level container. Because it is geared more toward value-level
//! programming, Rust requires all type parameters actually be used by the
//! corresponding type. However, we don't need to "store" a type in the same way
//! we store values. The compiler is responsible for tracking the concrete type
//! for each type parameter. But the language still requires us to act as if we
//! used each type parameter. `PhantomData` is the solution here, because it
//! lets us make use of the type parameters without actually storing any values.
//!
//! Separately, `PhantomData` also allows us to create "instances" of types that
//! normally can't be instantiated, like empty enums. For example, instances of
//! `Enum` below can never exist directly.
//!
//! ```
//! enum Enum {}
//! ```
//!
//! But instances of `PhantomData<Enum>` are perfectly valid. In this way,
//! library authors can create types that only exist at the type level, which
//! can sometimes simplify a design.
//!
//! ## Type-level functions
//!
//! To perform type-level computations, we need some way to map or transform
//! types into other types.
//!
//! At the value level, functions and methods map values of the input types to
//! values of the output types. The same can be accomplished at the type level
//! using traits and associated types. Type-level functions are implemented as
//! traits, where the implementing type and any type parameters are the inputs,
//! and associated types are the outputs.
//!
//! For example, consider the value level `not` method below.
//!
//! ```
//! enum Bool {
//! False,
//! True,
//! }
//!
//! impl Bool {
//! fn not(self) -> Self {
//! use Bool::*;
//! match self {
//! True => False,
//! False => True,
//! }
//! }
//! }
//! ```
//!
//! We can translate this example to the type level like so.
//!
//! ```
//! trait Bool {}
//!
//! enum True {}
//! enum False {}
//!
//! impl Bool for True {}
//! impl Bool for False {}
//!
//! trait Not: Bool {
//! type Result: Bool;
//! }
//!
//! impl Not for True {
//! type Result = False;
//! }
//!
//! impl Not for False {
//! type Result = True;
//! }
//! ```
//!
//! We can use the `Not` trait bound to transform one type to another. For
//! instance, we can create a container that accepts one type parameter but
//! stores a different one.
//!
//! ```
//! struct Container<B: Not> {
//! not: PhantomData<B::Result>;
//! }
//! ```
//!
//! Alternatively, we could redefine the trait and declar a corresponding type
//! alias as
//!
//! ```
//! trait NotFunction: Bool {
//! type Result: Bool;
//! }
//!
//! type Not<B> = <B as NotFunction>::Result;
//! ```
//!
//! Doing so would allow us to us reframe the last example as
//!
//! ```
//! struct Container<B: NotFunction> {
//! not: PhantomData<Not<B>>;
//! }
//! ```
//!
//! Type-level functions can be more complicated than this example, but they
//! ultimately represent a mapping from a set of input types (the implementing
//! type and any type parameters) to a set of output types (the associated
//! types).
//!
//! # `OptionalKind` trait pattern
//!
//! As mentioned above, traits can be used to define a kind of meta-type or type
//! class, essentially forming a set of valid types for a given type parameter.
//! They also represent the concept of types lifted from the value level to the
//! type level.
//!
//! What if we want to define a type class representing either a set of useful
//! types or some useless, null type? Essentially, how do we take the notion of
//! an [`Option`] type and raise it to the type level?
//!
//! Suppose we have some existing type class, defined by the `Class` trait, that
//! we want to make optional. We can define a new type class that includes all
//! instances of `Class` as well as some null type. For the latter we use
//! [`NoneT`], defined in this module.
//!
//! ```
//! trait OptionalClass {}
//!
//! impl OptionalClass for NoneT {}
//! impl<C: Class> OptionalClass for C {}
//! ```
//!
//! We can use this new type class to store an optional instance of a `Class`
//! type in a struct.
//!
//! ```
//! struct Container<C: OptionalClass> {
//! class: PhantomData<C>,
//! }
//! ```
//!
//! And we can restrict some of its methods to only operate on instances with a
//! valid `Class`.
//!
//! ```
//! impl<C: Class> Container<C> {
//! fn method(self) { ... }
//! }
//! ```
//!
//! Although it is not strictly necessary, we can also introduce a new type
//! class to differentiate the bare usage of `Class` from instances of some
//! `Class` where an `OptionalClass` is accepted.
//!
//! ```
//! trait SomeClass: OptionalClass + Class {}
//!
//! impl<C: Class> SomeClass for C {}
//! ```
//!
//! This new trait doesn't add any new information, but it can still help
//! readers understand that a particular type parameter is restricted to an
//! instances of `Class` when an `OptionalClass` could be accepted.
//!
//! Note that when `Class` and `OptionalClass` contain associated types, name
//! clashes may occur when using `SomeClass` as a trait bound. This can be
//! avoided by removing the `OptionalClass` super trait from `SomeClass`.
//! Ultimately, it is redundant anyway, because any implementer of `Class` also
//! implements `OptionalClass`.
//!
//! # `AnyKind` trait pattern
//!
//! The `AnyKind` trait pattern allows you to encapsulate types with multiple
//! type parameters and represent them with only a single type parameter. It
//! lets you introduce a layer of abstraction, which can simplify interfaces and
//! make them more readable. But most of all, it does so without sacrificing any
//! of our normal, type-level abilities.
//!
//! ## Defining an `AnyKind` trait
//!
//! Suppose you had a composite, type-level data structure. For example, the
//! GPIO `Pin` struct contains instances of two type-level enums, a `PinId` and
//! a `PinMode`. It looks something like this.
//!
//! ```
//! struct Pin<I: PinId, M: PinMode> {
//! // ...
//! }
//! ```
//!
//! Rust does not provide any way to speak about a `Pin` generally. Any mention
//! of the `Pin` type must also include its type parameters, i.e. `Pin<I, M>`.
//! This is not a deal-breaker, but it is less than ideal for type-level
//! programming. It would be nice if there were a way to succinctly refer to any
//! `Pin`, regardless of its type parameters.
//!
//! We've seen above that we can use traits to form a type class. What if we
//! were to introduce a new trait to label all instances of `Pin`? It would look
//! something like this.
//!
//! ```
//! trait AnyPin {}
//!
//! impl<I: PinId, M: PinMode> AnyPin for Pin<I, M> {}
//! ```
//!
//! Now, instead of refering to `Pin<I, M>`, we can refer to instances of the
//! `AnyPin` type class.
//!
//! ```
//! fn example<P: AnyPin>(pin: P) { ... }
//! ```
//!
//! Unfortunately, while this is more ergonomic, it is not very useful. As
//! authors of the code, we know that `AnyPin` is only implemented for `Pin`
//! types. But the compiler doesn't know that. Traits in Rust are open, so the
//! compiler must consider that `AnyPin` could be implemented for other types.
//!
//! As a consequence, the compiler knows very little about the type `P` in the
//! function above. In fact, because the `AnyPin` trait is completely empty, the
//! compiler knows *absolutely nothing* about the type `P`.
//!
//! Is there a way to make the `AnyPin` trait more useful? We can see from the
//! current implementation that we are throwing away information.
//!
//! ```
//! impl<I: PinId, M: PinMode> AnyPin for Pin<I, M> {}
//! ```
//!
//! The implementation of `AnyPin` is identical for every `Pin`, regardless of
//! the type parameters `I` and `M`, which erases that information. Instead, we
//! could choose to save that information in the form of associated types.
//!
//! Let's redesign the `AnyPin` trait to record the `PinId` and `PinMode`.
//!
//! ```
//! trait AnyPin {
//! type Id: PinId;
//! type Mode: PinMode;
//! }
//!
//! impl<I: PinId, M: PinMode> AnyPin for Pin<I, M> {
//! type Id = I;
//! type Mode = M;
//! }
//! ```
//!
//! This is better. When `P` implements `AnyPin`, we can at least recover the
//! corresponding `PinId` and `PinMode` types. However, `AnyPin` still doesn't
//! include any trait methods nor any super traits, so the compiler won't allow
//! us to do anything useful with an instances of `P`.
//!
//! We need some way to tell the compiler that when `P` implements `AnyPin`,
//! it is equivalent to saying `P` is exactly `Pin<P::Id, P::Mode>`.
//! Essentially, we want to take a generic type parameter `P` and treat it as if
//! it were an instance of a specific `Pin` type.
//!
//! We can start by defining a trait alias to recover the specific `Pin` type.
//!
//! ```
//! type SpecificPin<P> = Pin<<P as AnyPin>::Id, <P as AnyPin>::Mode>;
//! ```
//!
//! With this new definition, we can rephrase our statement above. We need some
//! way to tell the compiler that when `P` implements `AnyPin`,
//! `P == SpecificPin<P>`. There's no way to do that exactly, but we can come
//! close with some useful trait bounds: [`From`], [`Into`], [`AsRef`] and
//! [`AsMut`].
//!
//! ```
//! trait AnyPin
//! where
//! Self: From<SpecificPin<Self>>,
//! Self: Into<SpecificPin<Self>>,
//! Self: AsRef<SpecificPin<Self>>,
//! Self: AsMut<SpecificPin<Self>>,
//! {
//! type Id: PinId;
//! type Mode: PinMode;
//! }
//! ```
//!
//! Now we've given the compiler some useful information. When a type implements
//! `AnyPin`, it can be converted from and into instances of `Pin`. And
//! references to types that implement `AnyPin` can be converted into references
//! to `Pin`s.
//!
//! ```
//! fn example<P: AnyPin>(mut any_pin: P) {
//! // None of the type annotations here are necessary
//! // Everything can be inferred
//! // Remember that SpecificPin<P> is Pin<P::Id, P::Mode>
//! let pin_mut: &mut SpecificPin<P> = any_pin.as_mut();
//! let pin_ref: &SpecificPin<P> = any_pin.as_ref();
//! let pin: SpecificPin<P> = any_pin.into();
//! }
//! ```
//!
//! Finally, to simplify this pattern, we can gather all of the super trait
//! bounds into a single, reusable trait.
//!
//! ```
//! trait Is
//! where
//! Self: From<IsType<Self>>,
//! Self: Into<IsType<Self>>,
//! Self: AsRef<IsType<Self>>,
//! Self: AsMut<IsType<Self>>,
//! {
//! type Type;
//! }
//!
//! type IsType<T> = <T as Is>::Type;
//!
//! impl<T: AsRef<T> + AsMut<T>> Is for T {
//! type Type = T;
//! }
//! ```
//!
//! And we can rewrite our `AnyPin` trait as
//!
//! ```
//! trait AnyPin: Is<Type = SpecificPin<Self>> {
//! type Id: PinId;
//! type Mode: PinMode;
//! }
//! ```
//!
//! ## Using an `AnyKind` trait
//!
//! If a type takes multiple type parameters, storing it within a container
//! requires repeating all of the corresponding type parameters. For instance,
//! imagine a container that stores two completely generic `Pin` types.
//!
//! ```
//! struct TwoPins<I1, I2, M1, M2>
//! where
//! I1: PinId,
//! I2: PinId,
//! M1: PinMode,
//! M2: PinMode,
//! {
//! pin1: Pin<I1, M1>,
//! pin2: Pin<I2, M2>,
//! }
//! ```
//!
//! This struct has already ballooned to four type parameters, without even
//! doing much useful work. Given its heavy use of type parameters, this
//! limitation can make type-level programming tedious, cumbersome and
//! error-prone.
//!
//! Instead, we can use the `AnyKind` trait pattern to encapsulate each `Pin`
//! with a single type parameter.
//!
//! ```
//! struct TwoPins<P1, P2>
//! where
//! P1: AnyPin,
//! P2: AnyPin,
//! {
//! pin1: P1,
//! pin2: P2,
//! }
//! ```
//!
//! The result is far more readable and generally more comprehensible. Moreover,
//! although we no longer have direct access to the `PinId` and `PinMode` type
//! parameters, we haven't actually lost any expressive power.
//!
//! In the first version of `TwoPins`, suppose we wanted to implement a method
//! for pins in `FloatingInput` mode while simultaneously restricting the
//! possible `PinId`s based on some type class. The result might look like
//! this.
//!
//! ```
//! impl<I1, I2> for TwoPins<I1, I2, FloatingInput, FloatingInput>
//! where
//! I1: PinId + Class,
//! I2: PinId + Class,
//! {
//! fn method(&self) {
//! // ...
//! }
//! }
//! ```
//!
//! The same method could be expressed with the `AnyPin` approach like so
//!
//! ```
//! impl<P1, P2> for TwoPins<P1, P2>
//! where
//! P1: AnyPin<Mode = FloatingInput>,
//! P2: AnyPin<Mode = FloatingInput>,
//! P1::Id: Class,
//! P2::Id: Class,
//! {
//! fn method(&self) {
//! // ...
//! }
//! }
//! ```
//!
//! This example demonstrates the simultaneous readability and expressive power
//! of the `AnyKind` pattern.
//!
//! However, remember that when working with a type `P` that implements
//! `AnyPin`, the compiler can only use what it knows about the `AnyPin` trait.
//! But all of the functionality for GPIO pins is defined on the `Pin` type. To
//! make use of a generic type `P` implementing `AnyPin`, you must first convert
//! it to its corresponding `SpecificPin` using [`Into`], [`AsRef`] or
//! [`AsMut`]. And, in some instances, you may also need to convert back to the
//! type `P`.
//!
//! Suppose you wanted to store a completely generic `Pin` within a struct.
//!
//! ```
//! pub struct Example<P: AnyPin> {
//! pin: P,
//! }
//! ```
//!
//! Next, suppose you want to create a method that would take the `Pin` out of
//! the struct, perform some operations in different `PinMode`s, and put it back
//! into the struct before returning. The `elided` method below shows such an
//! example. However, it can be a bit tricky to follow all of the type
//! conversions here. For clarity, the `expanded` method shows the same behavior
//! with each transformation given its proper type annotation.
//!
//! ```
//! impl<P: AnyPin> Example<P> {
//! pub fn elided(mut self) -> Self {
//! let pin = self.pin.into();
//! let mut pin = pin.into_push_pull_output();
//! pin.set_high().ok();
//! let pin = pin.into_floating_input();
//! let _bit = pin.is_low().unwrap();
//! let pin = pin.into_mode();
//! self.pin = pin.into();
//! self
//! }
//! pub fn expanded(mut self) -> Self {
//! let pin: SpecificPin<P> = self.pin.into();
//! let mut pin: Pin<P::Id, PushPullOutput> = pin.into_push_pull_output();
//! pin.set_high().ok();
//! let pin: Pin<P::Id, FloatingInput> = pin.into_floating_input();
//! let _bit = pin.is_low().unwrap();
//! let pin: SpecificPin<P> = pin.into_mode::<P::Mode>();
//! self.pin = pin.into();
//! self
//! }
//! }
//! ```
//!
//! Notice that it is not enough to simply put back the correct `SpecificPin`.
//! Even though the `SpecificPin` implements
//! `AnyPin<Id = P::Id, Mode = P::Mode>` the compiler doesn't understand that
//! `SpecificPin<P> == P` for all `P`. As far as the compiler is concerned,
//! there could be several different types that implement
//! `AnyPin<Id = P::Id, Mode = P::Mode>`. Instead, the compiler requires that
//! you put back an instance of `P` exactly. The final use of [`Into`] is key
//! here. It transforms the `SpecificPin` back into `P` itself.
use core::ops::{Add, Sub};
use typenum::{Add1, Bit, Sub1, UInt, Unsigned, B1, U0};
mod private {
/// Super trait used to mark traits with an exhaustive set of
/// implementations
pub trait Sealed {}
impl Sealed for u8 {}
impl Sealed for i8 {}
impl Sealed for u16 {}
impl Sealed for i16 {}
impl Sealed for u32 {}
impl Sealed for i32 {}
impl Sealed for f32 {}
/// Mapping from an instance of a countable type to its successor
pub trait Increment {
/// Successor type of `Self`
type Inc;
/// Consume an instance of `Self` and return its successor
fn inc(self) -> Self::Inc;
}
/// Mapping from an instance of a countable type to its predecessor
pub trait Decrement {
/// Predecessor type of `Self`
type Dec;
/// Consume an instance of `Self` and return its predecessor
fn dec(self) -> Self::Dec;
}
}
pub(crate) use private::Decrement as PrivateDecrement;
pub(crate) use private::Increment as PrivateIncrement;
pub(crate) use private::Sealed;
/// Type-level version of the [`None`] variant
#[derive(Default)]
pub struct NoneT;
impl Sealed for NoneT {}
//==============================================================================
// Is
//==============================================================================
/// Marker trait for type identity
///
/// This trait is used as part of the [`AnyKind`] trait pattern. It represents
/// the concept of type identity, because all implementors have
/// `<Self as Is>::Type == Self`. When used as a trait bound with a specific
/// type, it guarantees that the corresponding type parameter is exactly the
/// specific type. Stated differently, it guarantees that `T == Specific` in
/// the following example.
///
/// ```
/// where T: Is<Type = Specific>
/// ```
///
/// Moreover, the super traits guarantee that any instance of or reference to a
/// type `T` can be converted into the `Specific` type.
///
/// ```
/// fn example<T>(mut any: T)
/// where
/// T: Is<Type = Specific>,
/// {
/// let specific_mut: &mut Specific = any.as_mut();
/// let specific_ref: &Specific = any.as_ref();
/// let specific: Specific = any.into();
/// }
/// ```
///
/// [`AnyKind`]: #anykind-trait-pattern
pub trait Is
where
Self: Sealed,
Self: From<IsType<Self>>,
Self: Into<IsType<Self>>,
Self: AsRef<IsType<Self>>,
Self: AsMut<IsType<Self>>,
{
type Type;
}
/// Type alias for [`Is::Type`]
pub type IsType<T> = <T as Is>::Type;
impl<T> Is for T
where
T: Sealed + AsRef<T> + AsMut<T>,
{
type Type = T;
}
//==============================================================================
// Counting
//==============================================================================
/// Implement `Sealed` for [`U0`]
impl Sealed for U0 {}
/// Implement `Sealed` for all type-level, [`Unsigned`] integers *except* [`U0`]
impl<U: Unsigned, B: Bit> Sealed for UInt<U, B> {}
/// Trait mapping each countable type to its successor
///
/// This trait maps each countable type to its corresponding successor type. The
/// actual implementation of this trait is contained within `PrivateIncrement`.
/// Access to `PrivateIncrement` is restricted, so that safe HAL APIs can be
/// built with it.
pub trait Increment: PrivateIncrement {}
impl<T: PrivateIncrement> Increment for T {}
/// Trait mapping each countable type to its predecessor
///
/// This trait maps each countable type to its corresponding predecessor type.
/// The actual implementation of this trait is contained within
/// `PrivateDecrement`. Access to `PrivateDecrement` is restricted, so that safe
/// HAL APIs can be built with it.
pub trait Decrement: PrivateDecrement {}
impl<T: PrivateDecrement> Decrement for T {}
impl<N> PrivateIncrement for N
where
N: Unsigned + Add<B1>,
Add1<N>: Unsigned,
{
type Inc = Add1<N>;
#[inline]
fn inc(self) -> Self::Inc {
Self::Inc::default()
}
}
impl<N> PrivateDecrement for N
where
N: Unsigned + Sub<B1>,
Sub1<N>: Unsigned,
{
type Dec = Sub1<N>;
#[inline]
fn dec(self) -> Self::Dec {
Self::Dec::default()
}
}