1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
//! UART [`Config`] definition and implementation\
use super::{
BaudMode, BitOrder, Capability, CharSize, CharSizeEnum, DataReg, DynCharSize, EightBit,
FixedCharSize, Parity, Registers, StopBits, Uart, ValidConfig, ValidPads,
};
use crate::{
pac,
sercom::*,
time::Hertz,
typelevel::{Is, Sealed},
};
use core::marker::PhantomData;
use num_traits::{AsPrimitive, PrimInt};
//=============================================================================
// Config
//=============================================================================
/// A configurable, disabled UART peripheral
///
/// This `struct` represents a configurable UART peripheral in its disabled
/// state. It is generic over the set of [`Pads`] and [`CharSize`].
/// Upon creation, the [`Config`] takes ownership of the
/// [`Sercom`] and resets it, returning it configured as an UART peripheral
/// with a default configuration:
///
/// * [`EightBit`]
/// * No parity
/// * One stop bit
/// * LSB-first
///
/// [`Config`] uses a builder-pattern API to configure the peripheral,
/// culminating in a call to [`enable`], which consumes the [`Config`] and
/// returns enabled [`Uart`]. The [`enable`] method is
/// restricted to [`ValidConfig`]s.
///
/// [`enable`]: Config::enable
/// [`Pads`]: super::Pads
pub struct Config<P, C = EightBit>
where
P: ValidPads,
C: CharSize,
{
pub(super) registers: Registers<P::Sercom>,
pads: P,
chsize: PhantomData<C>,
freq: Hertz,
}
/// Clock type needed to create a new [`Config`]. [`PM`](pac::PM) for thumbv6m
/// targets.
#[cfg(any(feature = "samd11", feature = "samd21"))]
pub type Clock = pac::PM;
/// Clock type needed to create a new [`Config`]. [`MCLK`](pac::MCLK) for
/// thumbv7em targets.
#[cfg(feature = "min-samd51g")]
pub type Clock = pac::MCLK;
impl<P: ValidPads> Config<P> {
/// Create a new [`Config`] in the default configuration
///
/// This function will enable the corresponding APB clock, reset the
/// [`Sercom`] peripheral, and return a [`Config`] in the default
/// configuration:
///
/// * [`EightBit`] [`CharSize`]
/// * No parity
/// * One stop bit
/// * LSB-first
///
/// [`Config`] takes ownership of the [`Sercom`] and [`Pads`](super::Pads).
///
/// Users must configure GCLK manually. The `freq` parameter represents the
/// GCLK frequency for this [`Sercom`] instance.
#[inline]
pub fn new(clk: &Clock, mut sercom: P::Sercom, pads: P, freq: impl Into<Hertz>) -> Self {
sercom.enable_apb_clock(clk);
Self::default(sercom, pads, freq).bit_order(BitOrder::LsbFirst)
}
/// Create a new [`Config`] in the default configuration
#[inline]
fn default(sercom: P::Sercom, pads: P, freq: impl Into<Hertz>) -> Self {
let mut registers = Registers::new(sercom);
registers.swrst();
// Enable internal clock mode
registers.configure_mode();
registers.configure_pads(P::RXPO as u8, P::TXPO as u8);
registers.set_char_size(EightBit::SIZE);
Self {
registers,
pads,
chsize: PhantomData,
freq: freq.into(),
}
}
}
impl<P, C> Config<P, C>
where
P: ValidPads,
C: CharSize,
{
/// Change the [`Config`] [`CharSize`]
#[inline]
fn change<C2>(self) -> Config<P, C2>
where
C2: CharSize,
{
Config {
registers: self.registers,
pads: self.pads,
chsize: PhantomData,
freq: self.freq,
}
}
/// Trigger the [`Sercom`]'s SWRST and return a [`Config`] in the
/// default configuration.
#[inline]
pub fn reset(self) -> Config<P> {
Config::default(self.registers.free(), self.pads, self.freq)
}
/// Consume the [`Config`], reset the peripheral, and return the [`Sercom`]
/// and [`Pads`](super::Pads)
#[inline]
pub fn free(mut self) -> (P::Sercom, P) {
self.registers.swrst();
(self.registers.free(), self.pads)
}
/// Change the [`CharSize`].
#[inline]
pub fn char_size<C2: FixedCharSize>(mut self) -> Config<P, C2> {
self.registers.set_char_size(C2::SIZE);
self.change()
}
/// Change the [`CharSize`] to [`DynCharSize`]. The UART's character
/// size will be changed to the default [`CharSizeEnum::EightBit`], and can
/// then be changed dynamically on an enabled [`Uart`] without changing
/// the underlying [`Config`]'s type through the
/// [`reconfigure`](Uart::reconfigure) method.
#[inline]
pub fn dyn_char_size(mut self) -> Config<P, DynCharSize> {
self.registers.set_char_size(CharSizeEnum::EightBit);
self.change()
}
/// Change the bit order of transmission (builder pattern version)
#[inline]
pub fn bit_order(mut self, bit_order: BitOrder) -> Self {
self.set_bit_order(bit_order);
self
}
/// Change the bit order of transmission (setter version)
#[inline]
pub fn set_bit_order(&mut self, bit_order: BitOrder) {
self.registers.set_bit_order(bit_order);
}
/// Get the current bit order
#[inline]
pub fn get_bit_order(&self) -> BitOrder {
self.registers.get_bit_order()
}
/// Change the parity setting (builder pattern version)
#[inline]
pub fn parity(mut self, parity: Parity) -> Self {
self.set_parity(parity);
self
}
/// Change the parity setting (setter version)
#[inline]
pub fn set_parity(&mut self, parity: Parity) {
self.registers.set_parity(parity);
}
/// Get the current parity setting
#[inline]
pub fn get_parity(&self) -> Parity {
self.registers.get_parity()
}
/// Change the stop bit setting (builder pattern version)
#[inline]
pub fn stop_bits(mut self, stop_bits: StopBits) -> Self {
self.set_stop_bits(stop_bits);
self
}
/// Change the stop bit setting (setter version)
#[inline]
pub fn set_stop_bits(&mut self, stop_bits: StopBits) {
self.registers.set_stop_bits(stop_bits);
}
/// Get the current stop bit setting
#[inline]
pub fn get_stop_bits(&self) -> StopBits {
self.registers.get_stop_bits()
}
/// Enable or disable the start of frame detector (builder pattern version)
///
/// When set, the UART will generate interrupts for
/// RXC and/or RXS if these interrupt flags have been enabled.
#[inline]
pub fn start_of_frame_detection(mut self, enabled: bool) -> Self {
self.set_start_of_frame_detection(enabled);
self
}
/// Enable or disable the start of frame detector (setter version)
///
/// When set, the UART will generate interrupts for
/// RXC and/or RXS if these interrupt flags have been enabled.
#[inline]
pub fn set_start_of_frame_detection(&mut self, enabled: bool) {
self.registers.set_start_of_frame_detection(enabled);
}
/// Get the current SOF detector setting
#[inline]
pub fn get_start_of_frame_detection(&self) -> bool {
self.registers.get_start_of_frame_detection()
}
/// Enable or disable the collision detector (builder pattern version)
///
/// When set, the UART will detect collisions and update the
/// corresponding flag in the STATUS register.
#[inline]
pub fn collision_detection(mut self, enabled: bool) -> Self {
self.set_collision_detection(enabled);
self
}
/// Enable or disable the collision detector (setter version)
///
/// When set, the UART will detect collisions and update the
/// corresponding flag in the STATUS register.
#[inline]
pub fn set_collision_detection(&mut self, enabled: bool) {
self.registers.set_collision_detection(enabled);
}
/// Get the current collision detector setting
#[inline]
pub fn get_collision_detection(&self) -> bool {
self.registers.get_collision_detection()
}
/// Set the baud rate (builder pattern version)
///
/// This function will calculate the best BAUD register setting based on the
/// stored GCLK frequency and desired baud rate. The maximum baud rate is
/// GCLK frequency/oversampling. Values outside this range will saturate at
/// the maximum supported baud rate.
///
/// Note that 3x oversampling is not supported.
#[inline]
pub fn baud<B: Into<Hertz>>(mut self, baud: B, mode: BaudMode) -> Self {
self.set_baud(baud, mode);
self
}
/// Set the baud rate (setter version)
///
/// This function will calculate the best BAUD register setting based on the
/// stored GCLK frequency and desired baud rate. The maximum baud rate is
/// GCLK frequency/oversampling. Values outside this range will saturate at
/// the maximum supported baud rate.
///
/// Note that 3x oversampling is not supported.
#[inline]
pub fn set_baud<B: Into<Hertz>>(&mut self, baud: B, mode: BaudMode) {
self.registers.set_baud(self.freq, baud, mode);
}
/// Get the contents of the `BAUD` register and the current baud mode. Note
/// that only the CONTENTS of `BAUD` are returned, and not the actual baud
/// rate. Refer to the datasheet to convert the `BAUD` register contents
/// into a baud rate.
#[inline]
pub fn get_baud(&self) -> (u16, BaudMode) {
self.registers.get_baud()
}
/// Control the buffer overflow notification (builder pattern version)
///
/// If set to true, an [`Error::Overflow`](super::Error::Overflow) will be
/// issued as soon as an overflow occurs. Otherwise, it will not be
/// issued until its place within the data stream.
#[inline]
pub fn immediate_overflow_notification(mut self, set: bool) -> Self {
self.set_immediate_overflow_notification(set);
self
}
/// Control the buffer overflow notification (setter version)
///
/// If set to true, an [`Error::Overflow`](super::Error::Overflow) will be
/// issued as soon as an overflow occurs. Otherwise, it will not be
/// issued until its place within the data stream.
#[inline]
pub fn set_immediate_overflow_notification(&mut self, set: bool) {
self.registers.set_immediate_overflow_notification(set);
}
/// Get the current immediate overflow notification setting
#[inline]
pub fn get_immediate_overflow_notification(&self) -> bool {
self.registers.get_immediate_overflow_notification()
}
/// Run in standby mode (builder pattern version)
///
/// When set, the UART peripheral will run in standby mode. See the
/// datasheet for more details.
#[inline]
pub fn run_in_standby(mut self, set: bool) -> Self {
self.set_run_in_standby(set);
self
}
/// Run in standby mode (setter version)
///
/// When set, the UART peripheral will run in standby mode. See the
/// datasheet for more details.
#[inline]
pub fn set_run_in_standby(&mut self, set: bool) {
self.registers.set_run_in_standby(set);
}
/// Get the current run in standby mode
#[inline]
pub fn get_run_in_standby(&self) -> bool {
self.registers.get_run_in_standby()
}
/// Enable or disable IrDA encoding (builder pattern version)
///
/// The pulse length controls the minimum pulse length that is required for
/// a pulse to be accepted by the IrDA receiver with regards to the
/// serial engine clock period. See datasheet for more information.
#[inline]
pub fn irda_encoding(mut self, pulse_length: Option<u8>) -> Self {
self.set_irda_encoding(pulse_length);
self
}
/// Enable or disable IrDA encoding (setter version)
///
/// The pulse length controls the minimum pulse length that is required for
/// a pulse to be accepted by the IrDA receiver with regards to the
/// serial engine clock period. See datasheet for more information.
#[inline]
pub fn set_irda_encoding(&mut self, pulse_length: Option<u8>) {
self.registers.set_irda_encoding(pulse_length);
}
/// Get the current IrDA encoding setting. The return type is the pulse
/// length wrapped in an [`Option`].
#[inline]
pub fn get_irda_encoding(&self) -> Option<u8> {
self.registers.get_irda_encoding()
}
}
impl<P: ValidPads> Config<P, DynCharSize> {
/// Dynamically change the character size
#[inline]
pub fn set_dyn_char_size(&mut self, char_size: CharSizeEnum) {
self.registers.set_char_size(char_size);
}
/// Get the current character size setting
pub fn get_dyn_char_size(&self) -> CharSizeEnum {
self.registers.get_char_size()
}
}
impl<P, C> Config<P, C>
where
P: ValidPads,
C: CharSize,
Self: ValidConfig,
{
/// Enable the UART peripheral and return a [`Uart`] struct.
///
/// UART transactions are not possible until the peripheral is enabled.
/// This method is limited to [`ValidConfig`]s
#[inline]
pub fn enable(mut self) -> Uart<Self, P::Capability> {
self.registers
.enable(P::Capability::RXEN, P::Capability::TXEN);
Uart {
config: self,
capability: PhantomData,
}
}
}
//=============================================================================
// AnyConfig
//=============================================================================
/// Type class for all possible [`Config`] types
///
/// This trait uses the [`AnyKind`] trait pattern to create a [type class] for
/// [`Config`] types. See the `AnyKind` documentation for more details on the
/// pattern.
///
/// In addition to the normal, `AnyKind` associated types. This trait also
/// copies the [`Sercom`] and `Word` types, to make it easier to apply
/// bounds to these types at the next level of abstraction.
///
/// [`AnyKind`]: crate::typelevel#anykind-trait-patter
pub trait AnyConfig: Sealed + Is<Type = SpecificConfig<Self>> {
type Sercom: Sercom;
type Pads: ValidPads<Sercom = Self::Sercom>;
type Word: 'static + PrimInt + AsPrimitive<DataReg>;
type CharSize: CharSize<Word = Self::Word>;
}
/// Type alias to recover the specific [`Config`] type from an implementation of
/// [`AnyConfig`]
pub type SpecificConfig<C> = Config<<C as AnyConfig>::Pads, <C as AnyConfig>::CharSize>;
/// Type alias to recover the specific [`Sercom`] type from an implementation of
/// [`AnyConfig`]
pub type ConfigSercom<C> = <C as AnyConfig>::Sercom;
impl<P, C> AsRef<Self> for Config<P, C>
where
P: ValidPads,
C: CharSize,
{
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
impl<P, C> AsMut<Self> for Config<P, C>
where
P: ValidPads,
C: CharSize,
{
#[inline]
fn as_mut(&mut self) -> &mut Self {
self
}
}
impl<P, C> Sealed for Config<P, C>
where
P: ValidPads,
C: CharSize,
{
}
impl<P, C> AnyConfig for Config<P, C>
where
P: ValidPads,
C: CharSize,
{
type Sercom = P::Sercom;
type Word = C::Word;
type Pads = P;
type CharSize = C;
}