1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
//! Implement [`embedded_hal`] traits for [`Spi`] structs
//!
//! As noted in the [spi module](super) documentation, the embedded-hal trait
//! implementations vary by both [`Size`] and [`Capability`]. Each
//! implementation is optimized to take advantage of all information known at
//! compile-time, so it is importatnt to carefully read the documentation in
//! this module.
//!
//! # Variations by [`Size`]
//!
//! SAMD11 and SAMD21 chips do not have 32-bit extension mode, so their
//! transaction `Size` can only vary by the [`CharSize`]. Both options,
//! [`EightBit`] and [`NineBit`], are [`AtomicSize`]s, because each can be
//! completed with a single read/write of the `DATA` register. Consequently,
//! each can implement both the blocking and non-blocking embedded HAL traits.
//! These traits are implemented for the [`Word`] type of the corresponding
//! `CharSize`. For example, an [`Spi`] struct with a `NineBit` `CharSize` would
//! implement `spi::FullDuplex<u16>`.
//!
//! Note that embedded HAL does not offer a way to transmit slices in a
//! non-blocking fashion, but this can be done using
#![cfg_attr(feature = "dma", doc = "[`DMA`](crate::dmac)")]
#![cfg_attr(not(feature = "dma"), doc = "`DMA`")]
//! or using interrupts and the [`spi_future`](super::super::spi_future) module.
//!
//! # Variations by [`Capability`]
//!
//! The implementations in this module also seek to optimize as much as possible
//! based on the `Capability` of the `Spi` struct. They follow a few general
//! rules:
//! - [`Tx`] structs can never receive data, so their corresponding trait
//! implementations never read the `DATA` register and can never return an
//! [`Error::Overflow`].
//! - [`Rx`] structs in a [`MasterMode`](super::MasterMode) must initiate all
//! transactions, so their implementations of non-blocking traits must track
//! the state of on-going transactions.
//! - [`Duplex`] structs must always read as many bytes as they send, even when
//! implementing `Write`-only traits, to ensure they never introduce an
//! [`Error::Overflow`].
//!
//! # Notes on individual embedded HAL traits
//!
//! ## `spi::FullDuplex`
//!
//! `spi::FullDuplex` is only implemented for structs with `Duplex`
//! `Capability`. Although the embedded HAL documentation assumes a
//! `MasterMode`, this module also implements it for the [`Slave`] [`OpMode`].
//!
//! ## `serial::Read`
//!
//! `serial::Read` is only implemented for structs with `Rx` `Capability`. When
//! in a `MasterMode`, it initiates and tracks the state of the on-going
//! transactions. But this is not required when acting as a `Slave`.
//!
//! ## `serial::Write`
//!
//! `serial::Write` is only implemented for structs with `Tx` `Capability`.
//! These implementations never read the `DATA` register and ignore all
//! instances of [`Error::Overflow`].
//!
//! ## `blocking::serial::Write`
//!
//! This trait uses the `blocking::serial::write::Default` implementation for
//! implementers of `serial::Write`.
//!
//! ## `blocking::spi` traits
//!
//! These traits are implemented following all of the rules outlined above for
//! the different [`Size`] and [`Capability`] options.
use embedded_hal::{blocking, serial, spi};
use nb::Error::WouldBlock;
use num_traits::{AsPrimitive, PrimInt};
use super::*;
//=============================================================================
// serial::Read
//=============================================================================
/// Implement [`serial::Read`] for [`Rx`] [`Spi`] structs in a [`MasterMode`]
///
/// `serial::Read` is only implemented for `Spi` structs with `Rx`
/// [`Capability`]. In a `MasterMode`, `Read` has to initiate transactions, so
/// it keeps track of the transaction state. If a transaction is in progress,
/// it will wait on `RXC`. If not, it will wait on `DRE`, and then send `0`.
impl<P, M, C> serial::Read<C::Word> for Spi<Config<P, M, C>, Rx>
where
Config<P, M, C>: ValidConfig,
P: ValidPads,
M: MasterMode,
C: CharSize,
C::Word: PrimInt,
u16: AsPrimitive<C::Word>,
{
type Error = Error;
#[inline]
fn read(&mut self) -> nb::Result<C::Word, Error> {
let in_progress = self.capability.in_progress;
let flags = self.read_flags_errors()?;
if !in_progress && flags.contains(Flags::DRE) {
unsafe { self.write_data(0) };
self.capability.in_progress = true;
Err(WouldBlock)
} else if in_progress && flags.contains(Flags::RXC) {
self.capability.in_progress = false;
unsafe { Ok(self.read_data().as_()) }
} else {
Err(WouldBlock)
}
}
}
/// Implement [`serial::Read`] for [`Rx`] [`Spi`] structs in [`Slave`]
/// [`OpMode`]
///
/// `serial::Read` is only implemented for `Spi` structs with `Rx`
/// [`Capability`]. In `Slave` `OpMode`, `Read` does not have to initiate
/// transactions, so it does not have to store any internal state. It only has
/// to wait on `RXC`.
impl<P, C> serial::Read<C::Word> for Spi<Config<P, Slave, C>, Rx>
where
Config<P, Slave, C>: ValidConfig,
P: ValidPads,
C: CharSize,
C::Word: PrimInt,
u16: AsPrimitive<C::Word>,
{
type Error = Error;
/// Wait for an `RXC` flag, then read the word
#[inline]
fn read(&mut self) -> nb::Result<C::Word, Error> {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::RXC) {
unsafe { Ok(self.read_data().as_()) }
} else {
Err(WouldBlock)
}
}
}
//=============================================================================
// serial::Write
//=============================================================================
/// Implement [`serial::Write`] for [`Tx`] [`Spi`] structs
///
/// `serial::Write` is only implemented for `Spi` structs with `Tx`
/// [`Capability`]. Because the `Capability` is `Tx`, this implementation never
/// reads the DATA register and ignores all buffer overflow errors.
impl<C> serial::Write<C::Word> for Spi<C, Tx>
where
C: ValidConfig,
C::Word: PrimInt + AsPrimitive<u16>,
{
type Error = Error;
#[inline]
fn write(&mut self, word: C::Word) -> nb::Result<(), Error> {
// Ignore buffer overflow errors
if self.read_flags().contains(Flags::DRE) {
unsafe { self.write_data(word.as_()) };
Ok(())
} else {
Err(WouldBlock)
}
}
#[inline]
fn flush(&mut self) -> nb::Result<(), Error> {
// Ignore buffer overflow errors
if self.read_flags().contains(Flags::TXC) {
Ok(())
} else {
Err(WouldBlock)
}
}
}
//=============================================================================
// blocking::serial::Write
//=============================================================================
impl<C> blocking::serial::write::Default<C::Word> for Spi<C, Tx>
where
C: ValidConfig,
Spi<C, Tx>: serial::Write<C::Word>,
{
}
//=============================================================================
// spi::FullDuplex
//=============================================================================
/// Implement [`spi::FullDuplex`] for [`Spi`] structs with [`AtomicSize`]
///
/// `spi::FullDuplex` is only implemented when the `Spi` struct has [`Duplex`]
/// [`Capability`]. The [`Word`] size used in the implementation depends on the
/// corresponding [`CharSize`].
impl<C> spi::FullDuplex<C::Word> for Spi<C, Duplex>
where
C: ValidConfig,
C::Word: PrimInt + AsPrimitive<u16>,
u16: AsPrimitive<C::Word>,
{
type Error = Error;
#[inline]
fn read(&mut self) -> nb::Result<C::Word, Error> {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::RXC) {
unsafe { Ok(self.read_data().as_()) }
} else {
Err(WouldBlock)
}
}
#[inline]
fn send(&mut self, word: C::Word) -> nb::Result<(), Error> {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::DRE) {
unsafe { self.write_data(word.as_()) };
Ok(())
} else {
Err(WouldBlock)
}
}
}
//=============================================================================
// Note on macros
//=============================================================================
// Macros are necessary for the following implementations of the embedded HAL
// `blocking` traits because of a limitation in the Rust trait system. The
// compiler can't seem to recongnize that the `blocking::spi::*::Default` traits
// can never be implemented for [`Spi`] in downstream crates, because that would
// violate the orphan rules.
//=============================================================================
// blocking::spi::Transfer
//=============================================================================
macro_rules! impl_blocking_spi_transfer {
( $($CharSize:ident),+ ) => {
$(
/// Implement [`Transfer`] for [`Spi`] structs that can [`Receive`]
///
/// The transfer accepts a slice of primitive integers, depending on
/// the [`CharSize`] (`u8` or `u16`).
///
/// [`Transfer`]: blocking::spi::Transfer
impl<P, M, A> blocking::spi::Transfer<Word<$CharSize>> for Spi<Config<P, M, $CharSize>, A>
where
Config<P, M, $CharSize>: ValidConfig,
P: ValidPads,
M: OpMode,
A: Receive,
{
type Error = Error;
#[inline]
fn transfer<'w>(&mut self, words: &'w mut [Word<$CharSize>]) -> Result<&'w [Word<$CharSize>], Error> {
let cells = core::cell::Cell::from_mut(words).as_slice_of_cells();
let mut to_send = cells.iter();
let mut to_recv = cells.iter();
while to_recv.len() > 0 {
let flags = self.read_flags_errors()?;
if to_send.len() > 0 && flags.contains(Flags::DRE) {
let word = match to_send.next() {
Some(cell) => cell.get(),
None => unreachable!(),
};
self.config.as_mut().regs.write_data(word as u16);
}
if to_recv.len() > to_send.len() && flags.contains(Flags::RXC) {
let word = self.config.as_mut().regs.read_data() as Word<$CharSize>;
match to_recv.next() {
Some(cell) => cell.set(word),
None => unreachable!(),
}
}
}
Ok(words)
}
}
)+
}
}
impl_blocking_spi_transfer!(EightBit, NineBit);
//=============================================================================
// blocking::spi::Write
//=============================================================================
macro_rules! impl_blocking_spi_write {
( $($CharSize:ident),+ ) => {
$(
/// Implement [`Write`] for [`Spi`] structs with [`Duplex`]
/// [`Capability`]
///
/// The transfer accepts a slice of primitive integers, depending on
/// the [`CharSize`] (`u8` or `u16`).
///
/// [`Write`]: blocking::spi::Write
impl<P, M> blocking::spi::Write<Word<$CharSize>> for Spi<Config<P, M, $CharSize>, Duplex>
where
Config<P, M, $CharSize>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write(&mut self, words: &[Word<$CharSize>]) -> Result<(), Error> {
// We are `Duplex`, so we must receive as many words as we send,
// otherwise we could trigger an overflow
let mut to_send = words.iter();
let mut to_recv = to_send.len();
while to_recv > 0 {
let flags = self.read_flags_errors()?;
if to_send.len() > 0 && flags.contains(Flags::DRE) {
let word = match to_send.next() {
Some(word) => *word,
None => unreachable!(),
};
self.config.as_mut().regs.write_data(word as u16);
}
if to_recv > to_send.len() && flags.contains(Flags::RXC) {
self.config.as_mut().regs.read_data();
to_recv -= 1;
}
}
Ok(())
}
}
/// Implement [`Write`] for [`Spi`] structs with [`Tx`]
/// [`Capability`]
///
/// The transfer accepts a slice of primitive integers, depending on
/// the [`CharSize`] (`u8` or `u16`).
///
/// Because the `Capability` is `Tx`, this implementation never
/// reads the DATA register and ignores all buffer overflow errors.
///
/// [`Write`]: blocking::spi::Write
impl<P, M> blocking::spi::Write<Word<$CharSize>> for Spi<Config<P, M, $CharSize>, Tx>
where
Config<P, M, $CharSize>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write(&mut self, words: &[Word<$CharSize>]) -> Result<(), Error> {
// We are `Tx`, so we don't have to consider reading at all, ever.
for word in words {
loop {
// Ignore buffer overflow errors
if self.read_status().contains(Status::LENERR) {
return Err(Error::LengthError)
} else if self.read_flags().contains(Flags::DRE) {
self.config.as_mut().regs.write_data(*word as u16);
break
}
}
}
Ok(())
}
}
)+
}
}
impl_blocking_spi_write!(EightBit, NineBit);
//=============================================================================
// blocking::spi::WriteIter
//=============================================================================
#[cfg(feature = "unproven")]
macro_rules! impl_blocking_spi_write_iter {
( $($CharSize:ident),+ ) => {
$(
/// Implement [`WriteIter`] for [`Spi`] structs with [`Duplex`]
/// [`Capability`]
///
/// The transfer accepts a slice of primitive integers, depending on
/// the [`CharSize`] (`u8` or `u16`).
///
/// [`WriteIter`]: blocking::spi::WriteIter
impl<P, M> blocking::spi::WriteIter<Word<$CharSize>> for Spi<Config<P, M, $CharSize>, Duplex>
where
Config<P, M, $CharSize>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write_iter<WI>(&mut self, words: WI) -> Result<(), Error>
where
WI: IntoIterator<Item = Word<$CharSize>>,
{
// We are `Duplex`, so we must receive as many words as we send,
// otherwise we could trigger an overflow. However, we don't know
// how many words there are to start with, so we have to send and
// receive them one at a time.
for word in words.into_iter() {
loop {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::DRE) {
unsafe { self.write_data(word as u16) };
break
}
}
loop {
let flags = self.read_flags_errors()?;
if flags.contains(Flags::RXC) {
self.config.as_mut().regs.read_data() as Word<$CharSize>;
break
}
}
}
Ok(())
}
}
/// Implement [`WriteIter`] for [`Spi`] structs with [`Tx`]
/// [`Capability`]
///
/// The transfer accepts a slice of primitive integers, depending on
/// the [`CharSize`] (`u8` or `u16`).
///
/// Because the `Capability` is `Tx`, this implementation never
/// reads the DATA register and ignores all buffer overflow errors.
///
/// [`WriteIter`]: blocking::spi::WriteIter
impl<P, M> blocking::spi::WriteIter<Word<$CharSize>> for Spi<Config<P, M, $CharSize>, Tx>
where
Config<P, M, $CharSize>: ValidConfig,
P: ValidPads,
M: OpMode,
{
type Error = Error;
#[inline]
fn write_iter<WI>(&mut self, words: WI) -> Result<(), Error>
where
WI: IntoIterator<Item = Word<$CharSize>>,
{
// We are `Tx`, so we don't have to consider reading at all, ever.
for word in words.into_iter() {
loop {
// Ignore buffer overflow errors
if self.read_status().contains(Status::LENERR) {
return Err(Error::LengthError)
} else if self.read_flags().contains(Flags::DRE) {
unsafe { self.write_data(word as u16) };
break
}
}
}
Ok(())
}
}
)+
};
}
#[cfg(feature = "unproven")]
impl_blocking_spi_write_iter!(EightBit, NineBit);