1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
use crate::{Result, UsbDirection, UsbError};
use core::mem;
/// Control request type.
#[repr(u8)]
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RequestType {
/// Request is a USB standard request. Usually handled by
/// [`UsbDevice`](crate::device::UsbDevice).
Standard = 0,
/// Request is intended for a USB class.
Class = 1,
/// Request is vendor-specific.
Vendor = 2,
/// Reserved.
Reserved = 3,
}
/// Control request recipient.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Recipient {
/// Request is intended for the entire device.
Device = 0,
/// Request is intended for an interface. Generally, the `index` field of the request specifies
/// the interface number.
Interface = 1,
/// Request is intended for an endpoint. Generally, the `index` field of the request specifies
/// the endpoint address.
Endpoint = 2,
/// None of the above.
Other = 3,
/// Reserved.
Reserved = 4,
}
/// A control request read from a SETUP packet.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Request {
/// Direction of the request.
pub direction: UsbDirection,
/// Type of the request.
pub request_type: RequestType,
/// Recipient of the request.
pub recipient: Recipient,
/// Request code. The meaning of the value depends on the previous fields.
pub request: u8,
/// Request value. The meaning of the value depends on the previous fields.
pub value: u16,
/// Request index. The meaning of the value depends on the previous fields.
pub index: u16,
/// Length of the DATA stage. For control OUT transfers this is the exact length of the data the
/// host sent. For control IN transfers this is the maximum length of data the device should
/// return.
pub length: u16,
}
impl Request {
/// Standard USB control request Get Status
pub const GET_STATUS: u8 = 0;
/// Standard USB control request Clear Feature
pub const CLEAR_FEATURE: u8 = 1;
/// Standard USB control request Set Feature
pub const SET_FEATURE: u8 = 3;
/// Standard USB control request Set Address
pub const SET_ADDRESS: u8 = 5;
/// Standard USB control request Get Descriptor
pub const GET_DESCRIPTOR: u8 = 6;
/// Standard USB control request Set Descriptor
pub const SET_DESCRIPTOR: u8 = 7;
/// Standard USB control request Get Configuration
pub const GET_CONFIGURATION: u8 = 8;
/// Standard USB control request Set Configuration
pub const SET_CONFIGURATION: u8 = 9;
/// Standard USB control request Get Interface
pub const GET_INTERFACE: u8 = 10;
/// Standard USB control request Set Interface
pub const SET_INTERFACE: u8 = 11;
/// Standard USB control request Synch Frame
pub const SYNCH_FRAME: u8 = 12;
/// Standard USB feature Endpoint Halt for Set/Clear Feature
pub const FEATURE_ENDPOINT_HALT: u16 = 0;
/// Standard USB feature Device Remote Wakeup for Set/Clear Feature
pub const FEATURE_DEVICE_REMOTE_WAKEUP: u16 = 1;
pub(crate) fn parse(buf: &[u8]) -> Result<Request> {
if buf.len() != 8 {
return Err(UsbError::ParseError);
}
let rt = buf[0];
let recipient = rt & 0b11111;
Ok(Request {
direction: rt.into(),
request_type: unsafe { mem::transmute((rt >> 5) & 0b11) },
recipient: if recipient <= 3 {
unsafe { mem::transmute(recipient) }
} else {
Recipient::Reserved
},
request: buf[1],
value: (buf[2] as u16) | ((buf[3] as u16) << 8),
index: (buf[4] as u16) | ((buf[5] as u16) << 8),
length: (buf[6] as u16) | ((buf[7] as u16) << 8),
})
}
/// Gets the descriptor type and index from the value field of a GET_DESCRIPTOR request.
pub fn descriptor_type_index(&self) -> (u8, u8) {
((self.value >> 8) as u8, self.value as u8)
}
}