1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
//! Fixsliced implementations of AES-128, AES-192 and AES-256 (32-bit)
//! adapted from the C implementation
//!
//! All implementations are fully bitsliced and do not rely on any
//! Look-Up Table (LUT).
//!
//! See the paper at <https://eprint.iacr.org/2020/1123.pdf> for more details.
//!
//! # Author (original C code)
//!
//! Alexandre Adomnicai, Nanyang Technological University, Singapore
//! <alexandre.adomnicai@ntu.edu.sg>
//!
//! Originally licensed MIT. Relicensed as Apache 2.0+MIT with permission.

#![allow(clippy::unreadable_literal)]

use crate::Block;
use cipher::{
    consts::{U16, U24, U32},
    generic_array::GenericArray,
};
use core::convert::TryInto;

/// AES block batch size for this implementation
pub(crate) const FIXSLICE_BLOCKS: usize = 2;

/// AES-128 round keys
pub(crate) type FixsliceKeys128 = [u32; 88];

/// AES-192 round keys
pub(crate) type FixsliceKeys192 = [u32; 104];

/// AES-256 round keys
pub(crate) type FixsliceKeys256 = [u32; 120];

/// 256-bit internal state
pub(crate) type State = [u32; 8];

/// Fully bitsliced AES-128 key schedule to match the fully-fixsliced representation.
pub(crate) fn aes128_key_schedule(key: &GenericArray<u8, U16>) -> FixsliceKeys128 {
    let mut rkeys = [0u32; 88];

    bitslice(&mut rkeys[..8], key, key);

    let mut rk_off = 0;
    for rcon in 0..10 {
        memshift32(&mut rkeys, rk_off);
        rk_off += 8;

        sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]);
        sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]);

        if rcon < 8 {
            add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon);
        } else {
            add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 8);
            add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 7);
            add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 5);
            add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 4);
        }

        xor_columns(&mut rkeys, rk_off, 8, ror_distance(1, 3));
    }

    // Adjust to match fixslicing format
    #[cfg(feature = "compact")]
    {
        for i in (8..88).step_by(16) {
            inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
        }
    }
    #[cfg(not(feature = "compact"))]
    {
        for i in (8..72).step_by(32) {
            inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
            inv_shift_rows_2(&mut rkeys[(i + 8)..(i + 16)]);
            inv_shift_rows_3(&mut rkeys[(i + 16)..(i + 24)]);
        }
        inv_shift_rows_1(&mut rkeys[72..80]);
    }

    // Account for NOTs removed from sub_bytes
    for i in 1..11 {
        sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]);
    }

    rkeys
}

/// Fully bitsliced AES-192 key schedule to match the fully-fixsliced representation.
pub(crate) fn aes192_key_schedule(key: &GenericArray<u8, U24>) -> FixsliceKeys192 {
    let mut rkeys = [0u32; 104];
    let mut tmp = [0u32; 8];

    bitslice(&mut rkeys[..8], &key[..16], &key[..16]);
    bitslice(&mut tmp, &key[8..], &key[8..]);

    let mut rcon = 0;
    let mut rk_off = 8;

    loop {
        for i in 0..8 {
            rkeys[rk_off + i] =
                (0x0f0f0f0f & (tmp[i] >> 4)) | (0xf0f0f0f0 & (rkeys[(rk_off - 8) + i] << 4));
        }

        sub_bytes(&mut tmp);
        sub_bytes_nots(&mut tmp);

        add_round_constant_bit(&mut tmp, rcon);
        rcon += 1;

        for i in 0..8 {
            let mut ti = rkeys[rk_off + i];
            ti ^= 0x30303030 & ror(tmp[i], ror_distance(1, 1));
            ti ^= 0xc0c0c0c0 & (ti << 2);
            tmp[i] = ti;
        }
        rkeys[rk_off..(rk_off + 8)].copy_from_slice(&tmp);
        rk_off += 8;

        for i in 0..8 {
            let ui = tmp[i];
            let mut ti = (0x0f0f0f0f & (rkeys[(rk_off - 16) + i] >> 4)) | (0xf0f0f0f0 & (ui << 4));
            ti ^= 0x03030303 & (ui >> 6);
            tmp[i] =
                ti ^ (0xfcfcfcfc & (ti << 2)) ^ (0xf0f0f0f0 & (ti << 4)) ^ (0xc0c0c0c0 & (ti << 6));
        }
        rkeys[rk_off..(rk_off + 8)].copy_from_slice(&tmp);
        rk_off += 8;

        sub_bytes(&mut tmp);
        sub_bytes_nots(&mut tmp);

        add_round_constant_bit(&mut tmp, rcon);
        rcon += 1;

        for i in 0..8 {
            let mut ti = (0x0f0f0f0f & (rkeys[(rk_off - 16) + i] >> 4))
                | (0xf0f0f0f0 & (rkeys[(rk_off - 8) + i] << 4));
            ti ^= 0x03030303 & ror(tmp[i], ror_distance(1, 3));
            rkeys[rk_off + i] =
                ti ^ (0xfcfcfcfc & (ti << 2)) ^ (0xf0f0f0f0 & (ti << 4)) ^ (0xc0c0c0c0 & (ti << 6));
        }
        rk_off += 8;

        if rcon >= 8 {
            break;
        }

        for i in 0..8 {
            let ui = rkeys[(rk_off - 8) + i];
            let mut ti = rkeys[(rk_off - 16) + i];
            ti ^= 0x30303030 & (ui >> 2);
            ti ^= 0xc0c0c0c0 & (ti << 2);
            tmp[i] = ti;
        }
    }

    // Adjust to match fixslicing format
    #[cfg(feature = "compact")]
    {
        for i in (8..104).step_by(16) {
            inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
        }
    }
    #[cfg(not(feature = "compact"))]
    {
        for i in (0..96).step_by(32) {
            inv_shift_rows_1(&mut rkeys[(i + 8)..(i + 16)]);
            inv_shift_rows_2(&mut rkeys[(i + 16)..(i + 24)]);
            inv_shift_rows_3(&mut rkeys[(i + 24)..(i + 32)]);
        }
    }

    // Account for NOTs removed from sub_bytes
    for i in 1..13 {
        sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]);
    }

    rkeys
}

/// Fully bitsliced AES-256 key schedule to match the fully-fixsliced representation.
pub(crate) fn aes256_key_schedule(key: &GenericArray<u8, U32>) -> FixsliceKeys256 {
    let mut rkeys = [0u32; 120];

    bitslice(&mut rkeys[..8], &key[..16], &key[..16]);
    bitslice(&mut rkeys[8..16], &key[16..], &key[16..]);

    let mut rk_off = 8;

    let mut rcon = 0;
    loop {
        memshift32(&mut rkeys, rk_off);
        rk_off += 8;

        sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]);
        sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]);

        add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon);
        xor_columns(&mut rkeys, rk_off, 16, ror_distance(1, 3));
        rcon += 1;

        if rcon == 7 {
            break;
        }

        memshift32(&mut rkeys, rk_off);
        rk_off += 8;

        sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]);
        sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]);

        xor_columns(&mut rkeys, rk_off, 16, ror_distance(0, 3));
    }

    // Adjust to match fixslicing format
    #[cfg(feature = "compact")]
    {
        for i in (8..120).step_by(16) {
            inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
        }
    }
    #[cfg(not(feature = "compact"))]
    {
        for i in (8..104).step_by(32) {
            inv_shift_rows_1(&mut rkeys[i..(i + 8)]);
            inv_shift_rows_2(&mut rkeys[(i + 8)..(i + 16)]);
            inv_shift_rows_3(&mut rkeys[(i + 16)..(i + 24)]);
        }
        inv_shift_rows_1(&mut rkeys[104..112]);
    }

    // Account for NOTs removed from sub_bytes
    for i in 1..15 {
        sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]);
    }

    rkeys
}

/// Fully-fixsliced AES-128 decryption (the InvShiftRows is completely omitted).
///
/// Decrypts four blocks in-place and in parallel.
pub(crate) fn aes128_decrypt(rkeys: &FixsliceKeys128, blocks: &mut [Block]) {
    debug_assert_eq!(blocks.len(), FIXSLICE_BLOCKS);
    let mut state = State::default();

    bitslice(&mut state, &blocks[0], &blocks[1]);

    add_round_key(&mut state, &rkeys[80..]);
    inv_sub_bytes(&mut state);

    #[cfg(not(feature = "compact"))]
    {
        inv_shift_rows_2(&mut state);
    }

    let mut rk_off = 72;
    loop {
        #[cfg(feature = "compact")]
        {
            inv_shift_rows_2(&mut state);
        }

        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        inv_mix_columns_1(&mut state);
        inv_sub_bytes(&mut state);
        rk_off -= 8;

        if rk_off == 0 {
            break;
        }

        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        inv_mix_columns_0(&mut state);
        inv_sub_bytes(&mut state);
        rk_off -= 8;

        #[cfg(not(feature = "compact"))]
        {
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            inv_mix_columns_3(&mut state);
            inv_sub_bytes(&mut state);
            rk_off -= 8;

            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            inv_mix_columns_2(&mut state);
            inv_sub_bytes(&mut state);
            rk_off -= 8;
        }
    }

    add_round_key(&mut state, &rkeys[..8]);

    inv_bitslice(&state, blocks);
}

/// Fully-fixsliced AES-128 encryption (the ShiftRows is completely omitted).
///
/// Encrypts four blocks in-place and in parallel.
pub(crate) fn aes128_encrypt(rkeys: &FixsliceKeys128, blocks: &mut [Block]) {
    debug_assert_eq!(blocks.len(), FIXSLICE_BLOCKS);
    let mut state = State::default();

    bitslice(&mut state, &blocks[0], &blocks[1]);

    add_round_key(&mut state, &rkeys[..8]);

    let mut rk_off = 8;
    loop {
        sub_bytes(&mut state);
        mix_columns_1(&mut state);
        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        rk_off += 8;

        #[cfg(feature = "compact")]
        {
            shift_rows_2(&mut state);
        }

        if rk_off == 80 {
            break;
        }

        #[cfg(not(feature = "compact"))]
        {
            sub_bytes(&mut state);
            mix_columns_2(&mut state);
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            rk_off += 8;

            sub_bytes(&mut state);
            mix_columns_3(&mut state);
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            rk_off += 8;
        }

        sub_bytes(&mut state);
        mix_columns_0(&mut state);
        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        rk_off += 8;
    }

    #[cfg(not(feature = "compact"))]
    {
        shift_rows_2(&mut state);
    }

    sub_bytes(&mut state);
    add_round_key(&mut state, &rkeys[80..]);

    inv_bitslice(&state, blocks);
}

/// Fully-fixsliced AES-192 decryption (the InvShiftRows is completely omitted).
///
/// Decrypts four blocks in-place and in parallel.
pub(crate) fn aes192_decrypt(rkeys: &FixsliceKeys192, blocks: &mut [Block]) {
    debug_assert_eq!(blocks.len(), FIXSLICE_BLOCKS);
    let mut state = State::default();

    bitslice(&mut state, &blocks[0], &blocks[1]);

    add_round_key(&mut state, &rkeys[96..]);
    inv_sub_bytes(&mut state);

    let mut rk_off = 88;
    loop {
        #[cfg(feature = "compact")]
        {
            inv_shift_rows_2(&mut state);
        }
        #[cfg(not(feature = "compact"))]
        {
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            inv_mix_columns_3(&mut state);
            inv_sub_bytes(&mut state);
            rk_off -= 8;

            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            inv_mix_columns_2(&mut state);
            inv_sub_bytes(&mut state);
            rk_off -= 8;
        }

        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        inv_mix_columns_1(&mut state);
        inv_sub_bytes(&mut state);
        rk_off -= 8;

        if rk_off == 0 {
            break;
        }

        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        inv_mix_columns_0(&mut state);
        inv_sub_bytes(&mut state);
        rk_off -= 8;
    }

    add_round_key(&mut state, &rkeys[..8]);

    inv_bitslice(&state, blocks);
}

/// Fully-fixsliced AES-192 encryption (the ShiftRows is completely omitted).
///
/// Encrypts four blocks in-place and in parallel.
pub(crate) fn aes192_encrypt(rkeys: &FixsliceKeys192, blocks: &mut [Block]) {
    debug_assert_eq!(blocks.len(), FIXSLICE_BLOCKS);
    let mut state = State::default();

    bitslice(&mut state, &blocks[0], &blocks[1]);

    add_round_key(&mut state, &rkeys[..8]);

    let mut rk_off = 8;
    loop {
        sub_bytes(&mut state);
        mix_columns_1(&mut state);
        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        rk_off += 8;

        #[cfg(feature = "compact")]
        {
            shift_rows_2(&mut state);
        }
        #[cfg(not(feature = "compact"))]
        {
            sub_bytes(&mut state);
            mix_columns_2(&mut state);
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            rk_off += 8;

            sub_bytes(&mut state);
            mix_columns_3(&mut state);
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            rk_off += 8;
        }

        if rk_off == 96 {
            break;
        }

        sub_bytes(&mut state);
        mix_columns_0(&mut state);
        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        rk_off += 8;
    }

    sub_bytes(&mut state);
    add_round_key(&mut state, &rkeys[96..]);

    inv_bitslice(&state, blocks);
}

/// Fully-fixsliced AES-256 decryption (the InvShiftRows is completely omitted).
///
/// Decrypts four blocks in-place and in parallel.
pub(crate) fn aes256_decrypt(rkeys: &FixsliceKeys256, blocks: &mut [Block]) {
    debug_assert_eq!(blocks.len(), FIXSLICE_BLOCKS);
    let mut state = State::default();

    bitslice(&mut state, &blocks[0], &blocks[1]);

    add_round_key(&mut state, &rkeys[112..]);
    inv_sub_bytes(&mut state);

    #[cfg(not(feature = "compact"))]
    {
        inv_shift_rows_2(&mut state);
    }

    let mut rk_off = 104;
    loop {
        #[cfg(feature = "compact")]
        {
            inv_shift_rows_2(&mut state);
        }

        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        inv_mix_columns_1(&mut state);
        inv_sub_bytes(&mut state);
        rk_off -= 8;

        if rk_off == 0 {
            break;
        }

        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        inv_mix_columns_0(&mut state);
        inv_sub_bytes(&mut state);
        rk_off -= 8;

        #[cfg(not(feature = "compact"))]
        {
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            inv_mix_columns_3(&mut state);
            inv_sub_bytes(&mut state);
            rk_off -= 8;

            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            inv_mix_columns_2(&mut state);
            inv_sub_bytes(&mut state);
            rk_off -= 8;
        }
    }

    add_round_key(&mut state, &rkeys[..8]);

    inv_bitslice(&state, blocks);
}

/// Fully-fixsliced AES-256 encryption (the ShiftRows is completely omitted).
///
/// Encrypts four blocks in-place and in parallel.
pub(crate) fn aes256_encrypt(rkeys: &FixsliceKeys256, blocks: &mut [Block]) {
    debug_assert_eq!(blocks.len(), FIXSLICE_BLOCKS);
    let mut state = State::default();

    bitslice(&mut state, &blocks[0], &blocks[1]);

    add_round_key(&mut state, &rkeys[..8]);

    let mut rk_off = 8;
    loop {
        sub_bytes(&mut state);
        mix_columns_1(&mut state);
        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        rk_off += 8;

        #[cfg(feature = "compact")]
        {
            shift_rows_2(&mut state);
        }

        if rk_off == 112 {
            break;
        }

        #[cfg(not(feature = "compact"))]
        {
            sub_bytes(&mut state);
            mix_columns_2(&mut state);
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            rk_off += 8;

            sub_bytes(&mut state);
            mix_columns_3(&mut state);
            add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
            rk_off += 8;
        }

        sub_bytes(&mut state);
        mix_columns_0(&mut state);
        add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]);
        rk_off += 8;
    }

    #[cfg(not(feature = "compact"))]
    {
        shift_rows_2(&mut state);
    }

    sub_bytes(&mut state);
    add_round_key(&mut state, &rkeys[112..]);

    inv_bitslice(&state, blocks);
}

/// Note that the 4 bitwise NOT (^= 0xffffffff) are accounted for here so that it is a true
/// inverse of 'sub_bytes'.
fn inv_sub_bytes(state: &mut [u32]) {
    debug_assert_eq!(state.len(), 8);

    // Scheduled using https://github.com/Ko-/aes-armcortexm/tree/public/scheduler
    // Inline "stack" comments reflect suggested stores and loads (ARM Cortex-M3 and M4)

    let u7 = state[0];
    let u6 = state[1];
    let u5 = state[2];
    let u4 = state[3];
    let u3 = state[4];
    let u2 = state[5];
    let u1 = state[6];
    let u0 = state[7];

    let t23 = u0 ^ u3;
    let t8 = u1 ^ t23;
    let m2 = t23 & t8;
    let t4 = u4 ^ t8;
    let t22 = u1 ^ u3;
    let t2 = u0 ^ u1;
    let t1 = u3 ^ u4;
    // t23 -> stack
    let t9 = u7 ^ t1;
    // t8 -> stack
    let m7 = t22 & t9;
    // t9 -> stack
    let t24 = u4 ^ u7;
    // m7 -> stack
    let t10 = t2 ^ t24;
    // u4 -> stack
    let m14 = t2 & t10;
    let r5 = u6 ^ u7;
    // m2 -> stack
    let t3 = t1 ^ r5;
    // t2 -> stack
    let t13 = t2 ^ r5;
    let t19 = t22 ^ r5;
    // t3 -> stack
    let t17 = u2 ^ t19;
    // t4 -> stack
    let t25 = u2 ^ t1;
    let r13 = u1 ^ u6;
    // t25 -> stack
    let t20 = t24 ^ r13;
    // t17 -> stack
    let m9 = t20 & t17;
    // t20 -> stack
    let r17 = u2 ^ u5;
    // t22 -> stack
    let t6 = t22 ^ r17;
    // t13 -> stack
    let m1 = t13 & t6;
    let y5 = u0 ^ r17;
    let m4 = t19 & y5;
    let m5 = m4 ^ m1;
    let m17 = m5 ^ t24;
    let r18 = u5 ^ u6;
    let t27 = t1 ^ r18;
    let t15 = t10 ^ t27;
    // t6 -> stack
    let m11 = t1 & t15;
    let m15 = m14 ^ m11;
    let m21 = m17 ^ m15;
    // t1 -> stack
    // t4 <- stack
    let m12 = t4 & t27;
    let m13 = m12 ^ m11;
    let t14 = t10 ^ r18;
    let m3 = t14 ^ m1;
    // m2 <- stack
    let m16 = m3 ^ m2;
    let m20 = m16 ^ m13;
    // u4 <- stack
    let r19 = u2 ^ u4;
    let t16 = r13 ^ r19;
    // t3 <- stack
    let t26 = t3 ^ t16;
    let m6 = t3 & t16;
    let m8 = t26 ^ m6;
    // t10 -> stack
    // m7 <- stack
    let m18 = m8 ^ m7;
    let m22 = m18 ^ m13;
    let m25 = m22 & m20;
    let m26 = m21 ^ m25;
    let m10 = m9 ^ m6;
    let m19 = m10 ^ m15;
    // t25 <- stack
    let m23 = m19 ^ t25;
    let m28 = m23 ^ m25;
    let m24 = m22 ^ m23;
    let m30 = m26 & m24;
    let m39 = m23 ^ m30;
    let m48 = m39 & y5;
    let m57 = m39 & t19;
    // m48 -> stack
    let m36 = m24 ^ m25;
    let m31 = m20 & m23;
    let m27 = m20 ^ m21;
    let m32 = m27 & m31;
    let m29 = m28 & m27;
    let m37 = m21 ^ m29;
    // m39 -> stack
    let m42 = m37 ^ m39;
    let m52 = m42 & t15;
    // t27 -> stack
    // t1 <- stack
    let m61 = m42 & t1;
    let p0 = m52 ^ m61;
    let p16 = m57 ^ m61;
    // m57 -> stack
    // t20 <- stack
    let m60 = m37 & t20;
    // p16 -> stack
    // t17 <- stack
    let m51 = m37 & t17;
    let m33 = m27 ^ m25;
    let m38 = m32 ^ m33;
    let m43 = m37 ^ m38;
    let m49 = m43 & t16;
    let p6 = m49 ^ m60;
    let p13 = m49 ^ m51;
    let m58 = m43 & t3;
    // t9 <- stack
    let m50 = m38 & t9;
    // t22 <- stack
    let m59 = m38 & t22;
    // p6 -> stack
    let p1 = m58 ^ m59;
    let p7 = p0 ^ p1;
    let m34 = m21 & m22;
    let m35 = m24 & m34;
    let m40 = m35 ^ m36;
    let m41 = m38 ^ m40;
    let m45 = m42 ^ m41;
    // t27 <- stack
    let m53 = m45 & t27;
    let p8 = m50 ^ m53;
    let p23 = p7 ^ p8;
    // t4 <- stack
    let m62 = m45 & t4;
    let p14 = m49 ^ m62;
    let s6 = p14 ^ p23;
    // t10 <- stack
    let m54 = m41 & t10;
    let p2 = m54 ^ m62;
    let p22 = p2 ^ p7;
    let s0 = p13 ^ p22;
    let p17 = m58 ^ p2;
    let p15 = m54 ^ m59;
    // t2 <- stack
    let m63 = m41 & t2;
    // m39 <- stack
    let m44 = m39 ^ m40;
    // p17 -> stack
    // t6 <- stack
    let m46 = m44 & t6;
    let p5 = m46 ^ m51;
    // p23 -> stack
    let p18 = m63 ^ p5;
    let p24 = p5 ^ p7;
    // m48 <- stack
    let p12 = m46 ^ m48;
    let s3 = p12 ^ p22;
    // t13 <- stack
    let m55 = m44 & t13;
    let p9 = m55 ^ m63;
    // p16 <- stack
    let s7 = p9 ^ p16;
    // t8 <- stack
    let m47 = m40 & t8;
    let p3 = m47 ^ m50;
    let p19 = p2 ^ p3;
    let s5 = p19 ^ p24;
    let p11 = p0 ^ p3;
    let p26 = p9 ^ p11;
    // t23 <- stack
    let m56 = m40 & t23;
    let p4 = m48 ^ m56;
    // p6 <- stack
    let p20 = p4 ^ p6;
    let p29 = p15 ^ p20;
    let s1 = p26 ^ p29;
    // m57 <- stack
    let p10 = m57 ^ p4;
    let p27 = p10 ^ p18;
    // p23 <- stack
    let s4 = p23 ^ p27;
    let p25 = p6 ^ p10;
    let p28 = p11 ^ p25;
    // p17 <- stack
    let s2 = p17 ^ p28;

    state[0] = s7;
    state[1] = s6;
    state[2] = s5;
    state[3] = s4;
    state[4] = s3;
    state[5] = s2;
    state[6] = s1;
    state[7] = s0;
}

/// Bitsliced implementation of the AES Sbox based on Boyar, Peralta and Calik.
///
/// See: <http://www.cs.yale.edu/homes/peralta/CircuitStuff/SLP_AES_113.txt>
///
/// Note that the 4 bitwise NOT (^= 0xffffffff) are moved to the key schedule.
fn sub_bytes(state: &mut [u32]) {
    debug_assert_eq!(state.len(), 8);

    // Scheduled using https://github.com/Ko-/aes-armcortexm/tree/public/scheduler
    // Inline "stack" comments reflect suggested stores and loads (ARM Cortex-M3 and M4)

    let u7 = state[0];
    let u6 = state[1];
    let u5 = state[2];
    let u4 = state[3];
    let u3 = state[4];
    let u2 = state[5];
    let u1 = state[6];
    let u0 = state[7];

    let y14 = u3 ^ u5;
    let y13 = u0 ^ u6;
    let y12 = y13 ^ y14;
    let t1 = u4 ^ y12;
    let y15 = t1 ^ u5;
    let t2 = y12 & y15;
    let y6 = y15 ^ u7;
    let y20 = t1 ^ u1;
    // y12 -> stack
    let y9 = u0 ^ u3;
    // y20 -> stack
    let y11 = y20 ^ y9;
    // y9 -> stack
    let t12 = y9 & y11;
    // y6 -> stack
    let y7 = u7 ^ y11;
    let y8 = u0 ^ u5;
    let t0 = u1 ^ u2;
    let y10 = y15 ^ t0;
    // y15 -> stack
    let y17 = y10 ^ y11;
    // y14 -> stack
    let t13 = y14 & y17;
    let t14 = t13 ^ t12;
    // y17 -> stack
    let y19 = y10 ^ y8;
    // y10 -> stack
    let t15 = y8 & y10;
    let t16 = t15 ^ t12;
    let y16 = t0 ^ y11;
    // y11 -> stack
    let y21 = y13 ^ y16;
    // y13 -> stack
    let t7 = y13 & y16;
    // y16 -> stack
    let y18 = u0 ^ y16;
    let y1 = t0 ^ u7;
    let y4 = y1 ^ u3;
    // u7 -> stack
    let t5 = y4 & u7;
    let t6 = t5 ^ t2;
    let t18 = t6 ^ t16;
    let t22 = t18 ^ y19;
    let y2 = y1 ^ u0;
    let t10 = y2 & y7;
    let t11 = t10 ^ t7;
    let t20 = t11 ^ t16;
    let t24 = t20 ^ y18;
    let y5 = y1 ^ u6;
    let t8 = y5 & y1;
    let t9 = t8 ^ t7;
    let t19 = t9 ^ t14;
    let t23 = t19 ^ y21;
    let y3 = y5 ^ y8;
    // y6 <- stack
    let t3 = y3 & y6;
    let t4 = t3 ^ t2;
    // y20 <- stack
    let t17 = t4 ^ y20;
    let t21 = t17 ^ t14;
    let t26 = t21 & t23;
    let t27 = t24 ^ t26;
    let t31 = t22 ^ t26;
    let t25 = t21 ^ t22;
    // y4 -> stack
    let t28 = t25 & t27;
    let t29 = t28 ^ t22;
    let z14 = t29 & y2;
    let z5 = t29 & y7;
    let t30 = t23 ^ t24;
    let t32 = t31 & t30;
    let t33 = t32 ^ t24;
    let t35 = t27 ^ t33;
    let t36 = t24 & t35;
    let t38 = t27 ^ t36;
    let t39 = t29 & t38;
    let t40 = t25 ^ t39;
    let t43 = t29 ^ t40;
    // y16 <- stack
    let z3 = t43 & y16;
    let tc12 = z3 ^ z5;
    // tc12 -> stack
    // y13 <- stack
    let z12 = t43 & y13;
    let z13 = t40 & y5;
    let z4 = t40 & y1;
    let tc6 = z3 ^ z4;
    let t34 = t23 ^ t33;
    let t37 = t36 ^ t34;
    let t41 = t40 ^ t37;
    // y10 <- stack
    let z8 = t41 & y10;
    let z17 = t41 & y8;
    let t44 = t33 ^ t37;
    // y15 <- stack
    let z0 = t44 & y15;
    // z17 -> stack
    // y12 <- stack
    let z9 = t44 & y12;
    let z10 = t37 & y3;
    let z1 = t37 & y6;
    let tc5 = z1 ^ z0;
    let tc11 = tc6 ^ tc5;
    // y4 <- stack
    let z11 = t33 & y4;
    let t42 = t29 ^ t33;
    let t45 = t42 ^ t41;
    // y17 <- stack
    let z7 = t45 & y17;
    let tc8 = z7 ^ tc6;
    // y14 <- stack
    let z16 = t45 & y14;
    // y11 <- stack
    let z6 = t42 & y11;
    let tc16 = z6 ^ tc8;
    // z14 -> stack
    // y9 <- stack
    let z15 = t42 & y9;
    let tc20 = z15 ^ tc16;
    let tc1 = z15 ^ z16;
    let tc2 = z10 ^ tc1;
    let tc21 = tc2 ^ z11;
    let tc3 = z9 ^ tc2;
    let s0 = tc3 ^ tc16;
    let s3 = tc3 ^ tc11;
    let s1 = s3 ^ tc16;
    let tc13 = z13 ^ tc1;
    // u7 <- stack
    let z2 = t33 & u7;
    let tc4 = z0 ^ z2;
    let tc7 = z12 ^ tc4;
    let tc9 = z8 ^ tc7;
    let tc10 = tc8 ^ tc9;
    // z14 <- stack
    let tc17 = z14 ^ tc10;
    let s5 = tc21 ^ tc17;
    let tc26 = tc17 ^ tc20;
    // z17 <- stack
    let s2 = tc26 ^ z17;
    // tc12 <- stack
    let tc14 = tc4 ^ tc12;
    let tc18 = tc13 ^ tc14;
    let s6 = tc10 ^ tc18;
    let s7 = z12 ^ tc18;
    let s4 = tc14 ^ s3;

    state[0] = s7;
    state[1] = s6;
    state[2] = s5;
    state[3] = s4;
    state[4] = s3;
    state[5] = s2;
    state[6] = s1;
    state[7] = s0;
}

/// NOT operations that are omitted in S-box
#[inline]
fn sub_bytes_nots(state: &mut [u32]) {
    debug_assert_eq!(state.len(), 8);
    state[0] ^= 0xffffffff;
    state[1] ^= 0xffffffff;
    state[5] ^= 0xffffffff;
    state[6] ^= 0xffffffff;
}

/// Computation of the MixColumns transformation in the fixsliced representation, with different
/// rotations used according to the round number mod 4.
///
/// Based on Käsper-Schwabe, similar to https://github.com/Ko-/aes-armcortexm.
macro_rules! define_mix_columns {
    (
        $name:ident,
        $name_inv:ident,
        $first_rotate:path,
        $second_rotate:path
    ) => {
        #[rustfmt::skip]
        fn $name(state: &mut State) {
            let (a0, a1, a2, a3, a4, a5, a6, a7) = (
                state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]
            );
            let (b0, b1, b2, b3, b4, b5, b6, b7) = (
                $first_rotate(a0),
                $first_rotate(a1),
                $first_rotate(a2),
                $first_rotate(a3),
                $first_rotate(a4),
                $first_rotate(a5),
                $first_rotate(a6),
                $first_rotate(a7),
            );
            let (c0, c1, c2, c3, c4, c5, c6, c7) = (
                a0 ^ b0,
                a1 ^ b1,
                a2 ^ b2,
                a3 ^ b3,
                a4 ^ b4,
                a5 ^ b5,
                a6 ^ b6,
                a7 ^ b7,
            );
            state[0] = b0      ^ c7 ^ $second_rotate(c0);
            state[1] = b1 ^ c0 ^ c7 ^ $second_rotate(c1);
            state[2] = b2 ^ c1      ^ $second_rotate(c2);
            state[3] = b3 ^ c2 ^ c7 ^ $second_rotate(c3);
            state[4] = b4 ^ c3 ^ c7 ^ $second_rotate(c4);
            state[5] = b5 ^ c4      ^ $second_rotate(c5);
            state[6] = b6 ^ c5      ^ $second_rotate(c6);
            state[7] = b7 ^ c6      ^ $second_rotate(c7);
        }

        #[rustfmt::skip]
        fn $name_inv(state: &mut State) {
            let (a0, a1, a2, a3, a4, a5, a6, a7) = (
                state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]
            );
            let (b0, b1, b2, b3, b4, b5, b6, b7) = (
                $first_rotate(a0),
                $first_rotate(a1),
                $first_rotate(a2),
                $first_rotate(a3),
                $first_rotate(a4),
                $first_rotate(a5),
                $first_rotate(a6),
                $first_rotate(a7),
            );
            let (c0, c1, c2, c3, c4, c5, c6, c7) = (
                a0 ^ b0,
                a1 ^ b1,
                a2 ^ b2,
                a3 ^ b3,
                a4 ^ b4,
                a5 ^ b5,
                a6 ^ b6,
                a7 ^ b7,
            );
            let (d0, d1, d2, d3, d4, d5, d6, d7) = (
                a0      ^ c7,
                a1 ^ c0 ^ c7,
                a2 ^ c1,
                a3 ^ c2 ^ c7,
                a4 ^ c3 ^ c7,
                a5 ^ c4,
                a6 ^ c5,
                a7 ^ c6,
            );
            let (e0, e1, e2, e3, e4, e5, e6, e7) = (
                c0      ^ d6,
                c1      ^ d6 ^ d7,
                c2 ^ d0      ^ d7,
                c3 ^ d1 ^ d6,
                c4 ^ d2 ^ d6 ^ d7,
                c5 ^ d3      ^ d7,
                c6 ^ d4,
                c7 ^ d5,
            );
            state[0] = d0 ^ e0 ^ $second_rotate(e0);
            state[1] = d1 ^ e1 ^ $second_rotate(e1);
            state[2] = d2 ^ e2 ^ $second_rotate(e2);
            state[3] = d3 ^ e3 ^ $second_rotate(e3);
            state[4] = d4 ^ e4 ^ $second_rotate(e4);
            state[5] = d5 ^ e5 ^ $second_rotate(e5);
            state[6] = d6 ^ e6 ^ $second_rotate(e6);
            state[7] = d7 ^ e7 ^ $second_rotate(e7);
        }
    }
}

define_mix_columns!(
    mix_columns_0,
    inv_mix_columns_0,
    rotate_rows_1,
    rotate_rows_2
);

define_mix_columns!(
    mix_columns_1,
    inv_mix_columns_1,
    rotate_rows_and_columns_1_1,
    rotate_rows_and_columns_2_2
);

#[cfg(not(feature = "compact"))]
define_mix_columns!(
    mix_columns_2,
    inv_mix_columns_2,
    rotate_rows_and_columns_1_2,
    rotate_rows_2
);

#[cfg(not(feature = "compact"))]
define_mix_columns!(
    mix_columns_3,
    inv_mix_columns_3,
    rotate_rows_and_columns_1_3,
    rotate_rows_and_columns_2_2
);

#[inline]
fn delta_swap_1(a: &mut u32, shift: u32, mask: u32) {
    let t = (*a ^ ((*a) >> shift)) & mask;
    *a ^= t ^ (t << shift);
}

#[inline]
fn delta_swap_2(a: &mut u32, b: &mut u32, shift: u32, mask: u32) {
    let t = (*a ^ ((*b) >> shift)) & mask;
    *a ^= t;
    *b ^= t << shift;
}

/// Applies ShiftRows once on an AES state (or key).
#[cfg(any(not(feature = "compact"), feature = "hazmat"))]
#[inline]
fn shift_rows_1(state: &mut [u32]) {
    debug_assert_eq!(state.len(), 8);
    for x in state.iter_mut() {
        delta_swap_1(x, 4, 0x0c0f0300);
        delta_swap_1(x, 2, 0x33003300);
    }
}

/// Applies ShiftRows twice on an AES state (or key).
#[inline]
fn shift_rows_2(state: &mut [u32]) {
    debug_assert_eq!(state.len(), 8);
    for x in state.iter_mut() {
        delta_swap_1(x, 4, 0x0f000f00);
    }
}

/// Applies ShiftRows three times on an AES state (or key).
#[inline]
fn shift_rows_3(state: &mut [u32]) {
    debug_assert_eq!(state.len(), 8);
    for x in state.iter_mut() {
        delta_swap_1(x, 4, 0x030f0c00);
        delta_swap_1(x, 2, 0x33003300);
    }
}

#[inline(always)]
fn inv_shift_rows_1(state: &mut [u32]) {
    shift_rows_3(state);
}

#[inline(always)]
fn inv_shift_rows_2(state: &mut [u32]) {
    shift_rows_2(state);
}

#[cfg(not(feature = "compact"))]
#[inline(always)]
fn inv_shift_rows_3(state: &mut [u32]) {
    shift_rows_1(state);
}

/// XOR the columns after the S-box during the key schedule round function.
///
/// The `idx_xor` parameter refers to the index of the previous round key that is
/// involved in the XOR computation (should be 8 and 16 for AES-128 and AES-256,
/// respectively).
///
/// The `idx_ror` parameter refers to the rotation value, which varies between the
/// different key schedules.
fn xor_columns(rkeys: &mut [u32], offset: usize, idx_xor: usize, idx_ror: u32) {
    for i in 0..8 {
        let off_i = offset + i;
        let rk = rkeys[off_i - idx_xor] ^ (0x03030303 & ror(rkeys[off_i], idx_ror));
        rkeys[off_i] =
            rk ^ (0xfcfcfcfc & (rk << 2)) ^ (0xf0f0f0f0 & (rk << 4)) ^ (0xc0c0c0c0 & (rk << 6));
    }
}

/// Bitslice two 128-bit input blocks input0, input1 into a 256-bit internal state.
fn bitslice(output: &mut [u32], input0: &[u8], input1: &[u8]) {
    debug_assert_eq!(output.len(), 8);
    debug_assert_eq!(input0.len(), 16);
    debug_assert_eq!(input1.len(), 16);

    // Bitslicing is a bit index manipulation. 256 bits of data means each bit is positioned at an
    // 8-bit index. AES data is 2 blocks, each one a 4x4 column-major matrix of bytes, so the
    // index is initially ([b]lock, [c]olumn, [r]ow, [p]osition):
    //     b0 c1 c0 r1 r0 p2 p1 p0
    //
    // The desired bitsliced data groups first by bit position, then row, column, block:
    //     p2 p1 p0 r1 r0 c1 c0 b0

    // Interleave the columns on input (note the order of input)
    //     b0 c1 c0 __ __ __ __ __ => c1 c0 b0 __ __ __ __ __
    let mut t0 = u32::from_le_bytes(input0[0x00..0x04].try_into().unwrap());
    let mut t2 = u32::from_le_bytes(input0[0x04..0x08].try_into().unwrap());
    let mut t4 = u32::from_le_bytes(input0[0x08..0x0c].try_into().unwrap());
    let mut t6 = u32::from_le_bytes(input0[0x0c..0x10].try_into().unwrap());
    let mut t1 = u32::from_le_bytes(input1[0x00..0x04].try_into().unwrap());
    let mut t3 = u32::from_le_bytes(input1[0x04..0x08].try_into().unwrap());
    let mut t5 = u32::from_le_bytes(input1[0x08..0x0c].try_into().unwrap());
    let mut t7 = u32::from_le_bytes(input1[0x0c..0x10].try_into().unwrap());

    // Bit Index Swap 5 <-> 0:
    //     __ __ b0 __ __ __ __ p0 => __ __ p0 __ __ __ __ b0
    let m0 = 0x55555555;
    delta_swap_2(&mut t1, &mut t0, 1, m0);
    delta_swap_2(&mut t3, &mut t2, 1, m0);
    delta_swap_2(&mut t5, &mut t4, 1, m0);
    delta_swap_2(&mut t7, &mut t6, 1, m0);

    // Bit Index Swap 6 <-> 1:
    //     __ c0 __ __ __ __ p1 __ => __ p1 __ __ __ __ c0 __
    let m1 = 0x33333333;
    delta_swap_2(&mut t2, &mut t0, 2, m1);
    delta_swap_2(&mut t3, &mut t1, 2, m1);
    delta_swap_2(&mut t6, &mut t4, 2, m1);
    delta_swap_2(&mut t7, &mut t5, 2, m1);

    // Bit Index Swap 7 <-> 2:
    //     c1 __ __ __ __ p2 __ __ => p2 __ __ __ __ c1 __ __
    let m2 = 0x0f0f0f0f;
    delta_swap_2(&mut t4, &mut t0, 4, m2);
    delta_swap_2(&mut t5, &mut t1, 4, m2);
    delta_swap_2(&mut t6, &mut t2, 4, m2);
    delta_swap_2(&mut t7, &mut t3, 4, m2);

    // Final bitsliced bit index, as desired:
    //     p2 p1 p0 r1 r0 c1 c0 b0
    output[0] = t0;
    output[1] = t1;
    output[2] = t2;
    output[3] = t3;
    output[4] = t4;
    output[5] = t5;
    output[6] = t6;
    output[7] = t7;
}

/// Un-bitslice a 256-bit internal state into two 128-bit blocks of output.
fn inv_bitslice(input: &[u32], output: &mut [Block]) {
    debug_assert_eq!(input.len(), 8);
    debug_assert_eq!(output.len(), 2);

    // Unbitslicing is a bit index manipulation. 256 bits of data means each bit is positioned at
    // an 8-bit index. AES data is 2 blocks, each one a 4x4 column-major matrix of bytes, so the
    // desired index for the output is ([b]lock, [c]olumn, [r]ow, [p]osition):
    //     b0 c1 c0 r1 r0 p2 p1 p0
    //
    // The initially bitsliced data groups first by bit position, then row, column, block:
    //     p2 p1 p0 r1 r0 c1 c0 b0

    let mut t0 = input[0];
    let mut t1 = input[1];
    let mut t2 = input[2];
    let mut t3 = input[3];
    let mut t4 = input[4];
    let mut t5 = input[5];
    let mut t6 = input[6];
    let mut t7 = input[7];

    // TODO: these bit index swaps are identical to those in 'packing'

    // Bit Index Swap 5 <-> 0:
    //     __ __ p0 __ __ __ __ b0 => __ __ b0 __ __ __ __ p0
    let m0 = 0x55555555;
    delta_swap_2(&mut t1, &mut t0, 1, m0);
    delta_swap_2(&mut t3, &mut t2, 1, m0);
    delta_swap_2(&mut t5, &mut t4, 1, m0);
    delta_swap_2(&mut t7, &mut t6, 1, m0);

    // Bit Index Swap 6 <-> 1:
    //     __ p1 __ __ __ __ c0 __ => __ c0 __ __ __ __ p1 __
    let m1 = 0x33333333;
    delta_swap_2(&mut t2, &mut t0, 2, m1);
    delta_swap_2(&mut t3, &mut t1, 2, m1);
    delta_swap_2(&mut t6, &mut t4, 2, m1);
    delta_swap_2(&mut t7, &mut t5, 2, m1);

    // Bit Index Swap 7 <-> 2:
    //     p2 __ __ __ __ c1 __ __ => c1 __ __ __ __ p2 __ __
    let m2 = 0x0f0f0f0f;
    delta_swap_2(&mut t4, &mut t0, 4, m2);
    delta_swap_2(&mut t5, &mut t1, 4, m2);
    delta_swap_2(&mut t6, &mut t2, 4, m2);
    delta_swap_2(&mut t7, &mut t3, 4, m2);

    // De-interleave the columns on output (note the order of output)
    //     c1 c0 b0 __ __ __ __ __ => b0 c1 c0 __ __ __ __ __
    output[0][0x00..0x04].copy_from_slice(&t0.to_le_bytes());
    output[0][0x04..0x08].copy_from_slice(&t2.to_le_bytes());
    output[0][0x08..0x0c].copy_from_slice(&t4.to_le_bytes());
    output[0][0x0c..0x10].copy_from_slice(&t6.to_le_bytes());
    output[1][0x00..0x04].copy_from_slice(&t1.to_le_bytes());
    output[1][0x04..0x08].copy_from_slice(&t3.to_le_bytes());
    output[1][0x08..0x0c].copy_from_slice(&t5.to_le_bytes());
    output[1][0x0c..0x10].copy_from_slice(&t7.to_le_bytes());

    // Final AES bit index, as desired:
    //     b0 c1 c0 r1 r0 p2 p1 p0
}

/// Copy 32-bytes within the provided slice to an 8-byte offset
fn memshift32(buffer: &mut [u32], src_offset: usize) {
    debug_assert_eq!(src_offset % 8, 0);

    let dst_offset = src_offset + 8;
    debug_assert!(dst_offset + 8 <= buffer.len());

    for i in (0..8).rev() {
        buffer[dst_offset + i] = buffer[src_offset + i];
    }
}

/// XOR the round key to the internal state. The round keys are expected to be
/// pre-computed and to be packed in the fixsliced representation.
#[inline]
fn add_round_key(state: &mut State, rkey: &[u32]) {
    debug_assert_eq!(rkey.len(), 8);
    for (a, b) in state.iter_mut().zip(rkey) {
        *a ^= b;
    }
}

#[inline(always)]
fn add_round_constant_bit(state: &mut [u32], bit: usize) {
    state[bit] ^= 0x0000c000;
}

#[inline(always)]
fn ror(x: u32, y: u32) -> u32 {
    x.rotate_right(y)
}

#[inline(always)]
fn ror_distance(rows: u32, cols: u32) -> u32 {
    (rows << 3) + (cols << 1)
}

#[inline(always)]
fn rotate_rows_1(x: u32) -> u32 {
    ror(x, ror_distance(1, 0))
}

#[inline(always)]
fn rotate_rows_2(x: u32) -> u32 {
    ror(x, ror_distance(2, 0))
}

#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_1_1(x: u32) -> u32 {
    (ror(x, ror_distance(1, 1)) & 0x3f3f3f3f) |
    (ror(x, ror_distance(0, 1)) & 0xc0c0c0c0)
}

#[cfg(not(feature = "compact"))]
#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_1_2(x: u32) -> u32 {
    (ror(x, ror_distance(1, 2)) & 0x0f0f0f0f) |
    (ror(x, ror_distance(0, 2)) & 0xf0f0f0f0)
}

#[cfg(not(feature = "compact"))]
#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_1_3(x: u32) -> u32 {
    (ror(x, ror_distance(1, 3)) & 0x03030303) |
    (ror(x, ror_distance(0, 3)) & 0xfcfcfcfc)
}

#[inline(always)]
#[rustfmt::skip]
fn rotate_rows_and_columns_2_2(x: u32) -> u32 {
    (ror(x, ror_distance(2, 2)) & 0x0f0f0f0f) |
    (ror(x, ror_distance(1, 2)) & 0xf0f0f0f0)
}

/// Low-level "hazmat" AES functions.
///
/// Note: this isn't actually used in the `Aes128`/`Aes192`/`Aes256`
/// implementations in this crate, but instead provides raw access to
/// the AES round function gated under the `hazmat` crate feature.
#[cfg(feature = "hazmat")]
pub(crate) mod hazmat {
    use super::{
        bitslice, inv_bitslice, inv_mix_columns_0, inv_shift_rows_1, inv_sub_bytes, mix_columns_0,
        shift_rows_1, sub_bytes, sub_bytes_nots, State,
    };
    use crate::{Block, ParBlocks};

    /// XOR the `src` block into the `dst` block in-place.
    fn xor_in_place(dst: &mut Block, src: &Block) {
        for (a, b) in dst.iter_mut().zip(src.as_slice()) {
            *a ^= *b;
        }
    }

    /// Perform a bitslice operation, loading a single block.
    fn bitslice_block(block: &Block) -> State {
        let mut state = State::default();
        bitslice(&mut state, block, block);
        state
    }

    /// Perform an inverse bitslice operation, extracting a single block.
    fn inv_bitslice_block(block: &mut Block, state: &State) {
        let mut out = [Block::default(); 2];
        inv_bitslice(state, &mut out);
        block.copy_from_slice(&out[0]);
    }

    /// AES cipher (encrypt) round function.
    #[inline]
    pub(crate) fn cipher_round(block: &mut Block, round_key: &Block) {
        let mut state = bitslice_block(block);
        sub_bytes(&mut state);
        sub_bytes_nots(&mut state);
        shift_rows_1(&mut state);
        mix_columns_0(&mut state);
        inv_bitslice_block(block, &state);
        xor_in_place(block, round_key);
    }

    /// AES cipher (encrypt) round function: parallel version.
    #[inline]
    pub(crate) fn cipher_round_par(blocks: &mut ParBlocks, round_keys: &ParBlocks) {
        for (chunk, keys) in blocks.chunks_exact_mut(2).zip(round_keys.chunks_exact(2)) {
            let mut state = State::default();
            bitslice(&mut state, &chunk[0], &chunk[1]);
            sub_bytes(&mut state);
            sub_bytes_nots(&mut state);
            shift_rows_1(&mut state);
            mix_columns_0(&mut state);
            inv_bitslice(&state, chunk);

            for i in 0..2 {
                xor_in_place(&mut chunk[i], &keys[i]);
            }
        }
    }

    /// AES cipher (encrypt) round function.
    #[inline]
    pub(crate) fn equiv_inv_cipher_round(block: &mut Block, round_key: &Block) {
        let mut state = bitslice_block(block);
        sub_bytes_nots(&mut state);
        inv_sub_bytes(&mut state);
        inv_shift_rows_1(&mut state);
        inv_mix_columns_0(&mut state);
        inv_bitslice_block(block, &state);
        xor_in_place(block, round_key);
    }

    /// AES cipher (encrypt) round function: parallel version.
    #[inline]
    pub(crate) fn equiv_inv_cipher_round_par(blocks: &mut ParBlocks, round_keys: &ParBlocks) {
        for (chunk, keys) in blocks.chunks_exact_mut(2).zip(round_keys.chunks_exact(2)) {
            let mut state = State::default();
            bitslice(&mut state, &chunk[0], &chunk[1]);
            sub_bytes_nots(&mut state);
            inv_sub_bytes(&mut state);
            inv_shift_rows_1(&mut state);
            inv_mix_columns_0(&mut state);
            inv_bitslice(&state, chunk);

            for i in 0..2 {
                xor_in_place(&mut chunk[i], &keys[i]);
            }
        }
    }

    /// AES mix columns function.
    #[inline]
    pub(crate) fn mix_columns(block: &mut Block) {
        let mut state = bitslice_block(block);
        mix_columns_0(&mut state);
        inv_bitslice_block(block, &state);
    }

    /// AES inverse mix columns function.
    #[inline]
    pub(crate) fn inv_mix_columns(block: &mut Block) {
        let mut state = bitslice_block(block);
        inv_mix_columns_0(&mut state);
        inv_bitslice_block(block, &state);
    }
}