cortex_m/register/fpscr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
//! Floating-point Status Control Register
/// Floating-point Status Control Register
#[derive(Clone, Copy, Debug)]
pub struct Fpscr {
bits: u32,
}
impl Fpscr {
/// Creates a `Fspcr` value from raw bits.
#[inline]
pub fn from_bits(bits: u32) -> Self {
Self { bits }
}
/// Returns the contents of the register as raw bits
#[inline]
pub fn bits(self) -> u32 {
self.bits
}
/// Read the Negative condition code flag
#[inline]
pub fn n(self) -> bool {
self.bits & (1 << 31) != 0
}
/// Sets the Negative condition code flag
#[inline]
pub fn set_n(&mut self, n: bool) {
let mask = 1 << 31;
match n {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Zero condition code flag
#[inline]
pub fn z(self) -> bool {
self.bits & (1 << 30) != 0
}
/// Sets the Zero condition code flag
#[inline]
pub fn set_z(&mut self, z: bool) {
let mask = 1 << 30;
match z {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Carry condition code flag
#[inline]
pub fn c(self) -> bool {
self.bits & (1 << 29) != 0
}
/// Sets the Carry condition code flag
#[inline]
pub fn set_c(&mut self, c: bool) {
let mask = 1 << 29;
match c {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Overflow condition code flag
#[inline]
pub fn v(self) -> bool {
self.bits & (1 << 28) != 0
}
/// Sets the Zero condition code flag
#[inline]
pub fn set_v(&mut self, v: bool) {
let mask = 1 << 28;
match v {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Alternative Half Precision bit
#[inline]
pub fn ahp(self) -> bool {
self.bits & (1 << 26) != 0
}
/// Sets the Alternative Half Precision bit
#[inline]
pub fn set_ahp(&mut self, ahp: bool) {
let mask = 1 << 26;
match ahp {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Default NaN mode bit
#[inline]
pub fn dn(self) -> bool {
self.bits & (1 << 25) != 0
}
/// Sets the Default NaN mode bit
#[inline]
pub fn set_dn(&mut self, dn: bool) {
let mask = 1 << 25;
match dn {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Flush to Zero mode bit
#[inline]
pub fn fz(self) -> bool {
self.bits & (1 << 24) != 0
}
/// Sets the Flush to Zero mode bit
#[inline]
pub fn set_fz(&mut self, fz: bool) {
let mask = 1 << 24;
match fz {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Rounding Mode control field
#[inline]
pub fn rmode(self) -> RMode {
match (self.bits & (3 << 22)) >> 22 {
0 => RMode::Nearest,
1 => RMode::PlusInfinity,
2 => RMode::MinusInfinity,
_ => RMode::Zero,
}
}
/// Sets the Rounding Mode control field
#[inline]
pub fn set_rmode(&mut self, rmode: RMode) {
let mask = 3 << 22;
match rmode {
RMode::Nearest => self.bits &= !mask,
RMode::PlusInfinity => self.bits = (self.bits & !mask) | (1 << 22),
RMode::MinusInfinity => self.bits = (self.bits & !mask) | (2 << 22),
RMode::Zero => self.bits |= mask,
}
}
/// Read the Input Denormal cumulative exception bit
#[inline]
pub fn idc(self) -> bool {
self.bits & (1 << 7) != 0
}
/// Sets the Input Denormal cumulative exception bit
#[inline]
pub fn set_idc(&mut self, idc: bool) {
let mask = 1 << 7;
match idc {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Inexact cumulative exception bit
#[inline]
pub fn ixc(self) -> bool {
self.bits & (1 << 4) != 0
}
/// Sets the Inexact cumulative exception bit
#[inline]
pub fn set_ixc(&mut self, ixc: bool) {
let mask = 1 << 4;
match ixc {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Underflow cumulative exception bit
#[inline]
pub fn ufc(self) -> bool {
self.bits & (1 << 3) != 0
}
/// Sets the Underflow cumulative exception bit
#[inline]
pub fn set_ufc(&mut self, ufc: bool) {
let mask = 1 << 3;
match ufc {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Overflow cumulative exception bit
#[inline]
pub fn ofc(self) -> bool {
self.bits & (1 << 2) != 0
}
/// Sets the Overflow cumulative exception bit
#[inline]
pub fn set_ofc(&mut self, ofc: bool) {
let mask = 1 << 2;
match ofc {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Division by Zero cumulative exception bit
#[inline]
pub fn dzc(self) -> bool {
self.bits & (1 << 1) != 0
}
/// Sets the Division by Zero cumulative exception bit
#[inline]
pub fn set_dzc(&mut self, dzc: bool) {
let mask = 1 << 1;
match dzc {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
/// Read the Invalid Operation cumulative exception bit
#[inline]
pub fn ioc(self) -> bool {
self.bits & (1 << 0) != 0
}
/// Sets the Invalid Operation cumulative exception bit
#[inline]
pub fn set_ioc(&mut self, ioc: bool) {
let mask = 1 << 0;
match ioc {
true => self.bits |= mask,
false => self.bits &= !mask,
}
}
}
/// Rounding mode
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum RMode {
/// Round to Nearest (RN) mode. This is the reset value.
Nearest,
/// Round towards Plus Infinity (RP) mode.
PlusInfinity,
/// Round towards Minus Infinity (RM) mode.
MinusInfinity,
/// Round towards Zero (RZ) mode.
Zero,
}
impl RMode {
/// Is Nearest the current rounding mode?
#[inline]
pub fn is_nearest(self) -> bool {
self == RMode::Nearest
}
/// Is Plus Infinity the current rounding mode?
#[inline]
pub fn is_plus_infinity(self) -> bool {
self == RMode::PlusInfinity
}
/// Is Minus Infinity the current rounding mode?
#[inline]
pub fn is_minus_infinity(self) -> bool {
self == RMode::MinusInfinity
}
/// Is Zero the current rounding mode?
#[inline]
pub fn is_zero(self) -> bool {
self == RMode::Zero
}
}
/// Read the FPSCR register
#[inline]
pub fn read() -> Fpscr {
let r: u32 = call_asm!(__fpscr_r() -> u32);
Fpscr::from_bits(r)
}
/// Set the value of the FPSCR register
#[inline]
pub unsafe fn write(fpscr: Fpscr) {
let fpscr = fpscr.bits();
call_asm!(__fpscr_w(fpscr: u32));
}