atsamd_hal/sercom/spi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
//! Use a SERCOM peripheral for SPI transactions
//!
//! Using an SPI peripheral occurs in three steps. First, you must supply
//! [`gpio`] [`Pin`]s to create a set of [`Pads`]. Next, you combine the
//! `Pads` with other pieces to form a [`Config`] struct. Finally, after
//! configuring the peripheral, you [`enable`] it to yield a functional
//! [`Spi`] struct. Transactions are performed using traits from the
//! [`embedded_hal`] crate, specifically those from the
//! [`spi`](embedded_hal::spi), [`serial`](embedded_hal::serial), and
//! [`blocking`](embedded_hal::blocking) modules.
//!
//! # Crating a set of [`Pads`]
//!
//! An SPI peripheral can use up to four [`Pin`]s as [`Sercom`] pads. However,
//! only certain `Pin` combinations are acceptable. All `Pin`s must be mapped to
//! the same `Sercom`, and for SAMx5x chips, they must also belong to the same
//! `IoSet`.
//! This HAL makes it impossible to use invalid `Pin` combinations, and the
//! [`Pads`] struct is responsible for enforcing these constraints.
//!
//! A `Pads` type takes five or six type parameters, depending on the chip. The
//! first type always specifies the `Sercom`. On SAMx5x chips, the second type
//! specifies the `IoSet`. The remaining four type parameters, `DI`, `DO`, `CK`
//! and `SS`, represent the Data In, Data Out, Sclk and SS pads respectively.
//! Each of these type parameters is an [`OptionalPad`] and defaults to
//! [`NoneT`]. A `Pad` is just a `Pin` configured in the correct [`PinMode`]
//! that implements [`IsPad`]. The [`bsp_pins!`](crate::bsp_pins) macro can be
//! used to define convenient type aliases for `Pad` types.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09, AlternateC};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! type Miso = Pin<PA08, AlternateC>;
//! type Sclk = Pin<PA09, AlternateC>;
//!
//! // SAMD11/SAMD21 version
//! type Pads = spi::Pads<Sercom0, Miso, NoneT, Sclk>;
//! // SAMx5x version
//! type Pads = spi::Pads<Sercom0, IoSet1, Miso, NoneT, Sclk>;
//! ```
//!
//! [`enable`]: Config::enable
//! [`gpio`]: crate::gpio
//! [`Pin`]: crate::gpio::pin::Pin
//! [`PinId`]: crate::gpio::pin::PinId
//! [`PinMode`]: crate::gpio::pin::PinMode
//!
//!
//! Alternatively, you can use the `PadsFromIds` alias to define a set of
//! `Pads` in terms of [`PinId`]s instead of [`Pin`]s. This is useful when you
//! don't have [`Pin`] aliases pre-defined.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! // SAMD21 version
//! type Pads = spi::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! // SAMx5x version
//! type Pads = spi::PadsFromIds<Sercom0, IoSet1, PA08, NoneT, PA09>;
//! ```
//!
//! Instances of `Pads` are created using the builder pattern. Start by creating
//! an empty set of `Pads` using [`Default`]. Then pass each respective `Pin`
//! using the corresponding methods. For SAMD21 and SAMx5x chips, the builder
//! methods automatically convert each pin to the correct [`PinMode`]. However,
//! due to inherent ambiguities, users must manually configure `PinMode`s for
//! SAMD11 chips.
//!
//! ```
//! use atsamd_hal::target_device::Peripherals;
//! use atsamd_hal::gpio::Pins;
//! use atsamd_hal::sercom::{Sercom0, spi};
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! let mut peripherals = Peripherals::take().unwrap();
//! let pins = Pins::new(peripherals.PORT);
//! // SAMD21 version
//! let pads = spi::Pads::<Sercom0>::default()
//! .sclk(pins.pa09)
//! .data_in(pins.pa08)
//! .data_out(pins.pa11);
//! // SAMx5x version
//! let pads = spi::Pads::<Sercom0, IoSet1>::default()
//! .sclk(pins.pa09)
//! .data_in(pins.pa08)
//! .data_out(pins.pa11);
//! ```
//!
//! To be accepted by the [`Config`] struct as a set of [`ValidPads`], the
//! `Pads` must do two things:
//! - Specify [`SomePad`] for `CK` and at least one of `DI` or `DO`
//! - Use a valid combination of [`PadNum`]s, so that the `Pads` implement
//! [`DipoDopo`]
//!
//! # `Config`uring the peripheral
//!
//! Next, create a [`Config`] struct, which represents the SPI peripheral in its
//! disabled state. A `Config` is specified with three type parameters: the
//! [`Pads`] type; an [`OpMode`], which defaults to [`Master`]; and a
//! [`Size`] type that varies by chip. [`Size`] essentially acts as a trait
//! alias. On SAMD11 and SAMD21 chips, it represents the
//! `CharSize`, which can either be `EightBit` or `NineBit`.
//! While on SAMx5x chips, it represents the transaction
//! `Length`
//! in bytes, using type-level numbers provided by the [`typenum`] crate. Valid
//! transaction lengths, from `U1` to `U255`, are re-exported in the
//! `lengths`
//! sub-module.
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::sercom::spi::Master;
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMD11/SAMD21-specific imports
//! use atsamd_hal::sercom::spi::NineBit;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::spi::lengths::U2;
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! // SAMD11/SAMD21 version
//! type Pads = spi::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, NineBit>;
//!
//! // SAMx5x version
//! type Pads = spi::PadsFromIds<Sercom0, IoSet1, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, U2>;
//! ```
//!
//! For simplicity, this module ignores character size on SAMx5x chips. Instead,
//! the SPI peripheral is always configured to use 32-bit extension mode and the
//! hardware `LENGTH` counter. Note that, due to a hardware bug, `ICSPACE` must
//! be at least one when using the length counter. See the silicon errata for
//! more details.
//!
//! Upon creation, the [`Config`] takes ownership of both the [`Pads`] and the
//! PAC [`Sercom`] struct. It takes a reference to the `PM` or `MCLK`, so that
//! it can enable the APB clock, and it takes a frequency to indicate the GCLK
//! configuration. Users are responsible for correctly configuring the GCLK.
//!
//! ```
//! use atsamd_hal::time::U32Ext;
//!
//! // Not shown: configure GCLK for 10 MHz
//!
//! // SAMD11/SAMD21 version
//! let pm = peripherals.PM;
//! let sercom = peripherals.SERCOM0;
//! let freq = 10.mhz();
//! let config = spi::Config::new(&pm, sercom, pads, freq);
//!
//! // SAMx5x version
//! let mclk = peripherals.MCLK;
//! let sercom = peripherals.SERCOM0;
//! let freq = 10.mhz();
//! let config = spi::Config::new(&mclk, sercom, pads, freq);
//! ```
//!
//! The [`Config`] uses two different APIs for configuration. For most
//! parameters, it provides `get_` and `set_` methods that take `&self` and
//! `&mut self` respectively, e.g. [`get_bit_order`](Config::get_bit_order) and
//! [`set_bit_order`](Config::set_bit_order). However, because `Config` tracks
//! the [`OpMode`] and [`Size`] at compile-time, which requires changing the
//! corresponding type parameters, `Config` also provides a builder-pattern API,
//! where methods take and return `self`, e.g. [`bit_order`](Config::bit_order).
//!
//! Once configured, the [`enable`] method consumes the `Config` and returns an
//! enabled [`Spi`] struct that can be used for transactions. Because the
//! `enable` function takes the `Config` as `self`, the builder-pattern API is
//! usually the more ergonomic option.
//!
//! ```
//! use embedded_hal::spi::MODE_1;
//!
//! // SAMD11/SAMD21 version
//! let spi = spi::Config::new(&pm, sercom, pads, freq)
//! .baud(1.mhz())
//! .char_size::<NineBit>()
//! .bit_order(BitOrder::LsbFirst)
//! .spi_mode(MODE_1)
//! .enable();
//!
//! // SAMx5x version
//! let spi = spi::Config::new(&mclk, sercom, pads, freq)
//! .baud(1.mhz())
//! .length::<U2>()
//! .bit_order(BitOrder::LsbFirst)
//! .spi_mode(MODE_1)
//! .enable();
//! ```
//!
//! To be accepted as a [`ValidConfig`], the `Config` must have a set of
//! [`ValidPads`] that matches its [`OpMode`]. In particular, the `SS` pad must
//! be [`NoneT`] for [`Master`] mode, where the user is expected to handle it
//! manaully. But it must be [`SomePad`] in [`MasterHWSS`] and [`Slave`] modes,
//! where it is controlled by the hardware.
//!
//! # Using a functional `Spi` peripheral
//!
//! An [`Spi`] struct has two type parameters. The first is the corresponding
//! `Config`, while the second represents its [`Capability`], i.e. [`Rx`],
//! [`Tx`] or [`Duplex`]. The [`enable`] function determines the `Capability`
//! automaically from the set of [`ValidPads`].
//!
//! ```
//! use atsamd_hal::gpio::{PA08, PA09};
//! use atsamd_hal::sercom::{Sercom0, spi};
//! use atsamd_hal::sercom::spi::{Master, Rx};
//! use atsamd_hal::typelevel::NoneT;
//!
//! // SAMD11/SAMD21-specific imports
//! use atsamd_hal::sercom::spi::NineBit;
//!
//! // SAMx5x-specific imports
//! use atsamd_hal::sercom::spi::lengths::U2;
//! use atsamd_hal::sercom::pad::IoSet1;
//!
//! // SAMD11/SAMD21 version
//! type Pads = spi::PadsFromIds<Sercom0, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, NineBit>;
//! type Spi = spi::Spi<Config, Rx>;
//!
//! // SAMx5x version
//! type Pads = spi::PadsFromIds<Sercom0, IoSet1, PA08, NoneT, PA09>;
//! type Config = spi::Config<Pads, Master, U2>;
//! type Spi = spi::Spi<Config, Rx>;
//! ```
//!
//! Only [`Spi`] structs can actually perform transactions. To do so, use the
//! various embedded HAL traits, like
//! [`spi::SpiBus`](crate::ehal::spi::SpiBus),
//! [`embedded_io::Read`], [`embedded_io::Write`],
//! [`embedded_hal_nb::serial::Read`](crate::ehal_nb::serial::Read), or
//! [`embedded_hal_nb::serial::Write`](crate::ehal_nb::serial::Write).
//! See the [`impl_ehal`] module documentation for more details about the
//! specific trait implementations, which vary based on [`Size`] and
//! [`Capability`].
//!
//! ```
//! use nb::block;
//! use crate::ehal_02::spi::FullDuplex;
//!
//! block!(spi.send(0xAA55));
//! let rcvd: u16 = block!(spi.read());
//! ```
//!
//! ## Flushing the bus
//!
//! The [`SpiBus`](crate::ehal::spi::SpiBus) methods do not flush the bus when a
//! transaction is complete. This is in part to increase performance and allow
//! for pipelining SPI transactions. This is true for both sync and async
//! operation. As such, you should ensure you manually call
//! [`flush`](crate::ehal::spi::SpiBus::flush) when:
//! * You must synchronize SPI activity and GPIO activity, for example before
//! deasserting a CS pin.
//! * Before deinitializing the SPI peripheral.
//!
//! Take note that the [`SpiDevice`](crate::ehal::spi::SpiDevice)
//! implementations automatically take care of flushing, so no further flushing
//! is needed.
//!
//! [See the embedded-hal spec](https://docs.rs/embedded-hal/latest/embedded_hal/spi/index.html#flushing)
//! for more information.
//!
//! # [`PanicOnRead`] and [`PanicOnWrite`]
//!
//! Some driver libraries take a type implementing [`embedded_hal::spi::SpiBus`]
//! or [`embedded_hal::spi::SpiDevice`], even when they only need to receive or
//! send data, but not both. A good example is WS2812 addressable LEDs
//! (neopixels), which only take a data input. Therefore, their protocol can be
//! implemented with a [`Tx`] [`Spi`] that only has a MOSI pin. In another
//! example, often LCD screens only have a MOSI and SCK pins. In order to
//! unnecessarily tying up pins in the [`Spi`] struct, and provide an escape
//! hatch for situations where constructing the [`Spi`] struct would otherwise
//! be impossible, we provide the [`PanicOnRead`] and [`PanicOnWrite`] wrapper
//! types, which implement [`embedded_hal::spi::SpiBus`].
//!
//! As the names imply, they panic if an incompatible method is called. See
//! [`Spi::into_panic_on_write`] and [`Spi::into_panic_on_read`].
//!
//! [`PanicOnRead`] and [`PanicOnWrite`] are compatible with DMA.
//!
//! # Using SPI with DMA <span class="stab portability" title="Available on crate feature `dma` only"><code>dma</code></span>
//!
//! This HAL includes support for DMA-enabled SPI transfers. Use
//! [`Spi::with_dma_channels`] ([`Duplex`] and [`Rx`]), and
//! [`Spi::with_tx_channel`] ([`Tx`]-only) to attach DMA channels to the [`Spi`]
//! struct. A DMA-enabled [`Spi`] implements the
//! blocking [`embedded_hal::spi::SpiBus`], [`embedded_io::Write`] and/or
//! [`embedded_io::Read`] traits, which can be used to perform SPI transactions
//! which are fast, continuous and low jitter, even if they are preemped by a
//! higher priority interrupt.
//!
//! ```
//! // Assume channel0 and channel1 are configured `dmac::Channel`, and spi a
//! // fully-configured `Spi`
//!
//! // Create data to send
//! let buffer: [u8; 50] = [0xff; 50];
//!
//! // Attach DMA channels
//! let spi = spi.with_dma_channels(channel0, channel1);
//!
//! // Perform the transfer
//! spi.write(&mut buffer)?;
//! ```
//!
//! # `async` operation <span class="stab portability" title="Available on crate feature `async` only"><code>async</code></span>
//!
//! An [`Spi`] can be used for
//! `async` operations. Configuring a [`Spi`] in async mode is relatively
//! simple:
//!
//! * Bind the corresponding `SERCOM` interrupt source to the SPI
//! [`InterruptHandler`] (refer to the module-level [`async_hal`]
//! documentation for more information).
//! * Turn a previously configured [`Spi`] into a [`SpiFuture`] by calling
//! [`Spi::into_future`]
//! * Optionally, add DMA channels to RX, TX or both using
//! [`SpiFuture::with_rx_dma_channel`] and [`SpiFuture::with_tx_dma_channel`].
//! The API is exactly the same whether DMA channels are used or not.
//! * Use the provided async methods for reading or writing to the SPI
//! peripheral. [`SpiFuture`] implements [`embedded_hal_async::spi::SpiBus`].
//!
//! `SpiFuture` implements `AsRef<Spi>` and `AsMut<Spi>` so
//! that it can be reconfigured using the regular [`Spi`] methods.
//!
//! ## Considerations when using `async` [`Spi`] with DMA <span class="stab portability" title="Available on crate feature `async` only"><code>async</code></span> <span class="stab portability" title="Available on crate feature `dma` only"><code>dma</code></span>
//!
//! * An [`Spi`] struct must be turned into an [`SpiFuture`] by calling
//! [`Spi::into_future`] before calling `with_dma_channel`. The DMA channel
//! itself must also be configured in async mode by using
//! [`DmaController::into_future`](crate::dmac::DmaController::into_future).
//! If a DMA channel is added to the [`Spi`] struct before it is turned into
//! an [`SpiFuture`], it will not be able to use DMA in async mode.
//!
//! ```
//! // This will work
//! let spi = spi.into_future().with_dma_channels(rx_channel, tx_channel);
//!
//! // This won't
//! let spi = spi.with_dma_channels(rx_channel, tx_channel).into_future();
//! ```
//!
//! ### Safety considerations
//!
//! In `async` mode, an SPI+DMA transfer does not require `'static` source and
//! destination buffers. This, in theory, makes its use `unsafe`. However it is
//! marked as safe for better ergonomics, and to enable the implementation of
//! the [`embedded_hal_async::spi::SpiBus`] trait.
//!
//! This means that, as an user, you **must** ensure that the [`Future`]s
//! returned by the [`embedded_hal_async::spi::SpiBus`] methods may never be
//! forgotten through [`forget`] or by wrapping them with a [`ManuallyDrop`].
//!
//! The returned futures implement [`Drop`] and will automatically stop any
//! ongoing transfers; this guarantees that the memory occupied by the
//! now-dropped buffers may not be corrupted by running transfers.
//!
//! This means that using functions like [`futures::select_biased`] to implement
//! timeouts is safe; transfers will be safely cancelled if the timeout expires.
//!
//! This also means that should you [`forget`] this [`Future`] after its
//! first [`poll`] call, the transfer will keep running, ruining the
//! now-reclaimed memory, as well as the rest of your day.
//!
//! * `await`ing is fine: the [`Future`] will run to completion.
//! * Dropping an incomplete transfer is also fine. Dropping can happen, for
//! example, if the transfer doesn't complete before a timeout expires.
//! * Dropping an incomplete transfer *without running its destructor* is
//! **unsound** and will trigger undefined behavior.
//!
//! ```ignore
//! async fn always_ready() {}
//!
//! let mut buffer = [0x00; 10];
//!
//! // This is completely safe
//! spi.read(&mut buffer).await?;
//!
//! // This is also safe: we launch a transfer, which is then immediately cancelled
//! futures::select_biased! {
//! _ = spi.read(&mut buffer)?,
//! _ = always_ready(),
//! }
//!
//! // This, while contrived, is also safe.
//! {
//! use core::future::Future;
//!
//! let future = spi.read(&mut buffer);
//! futures::pin_mut!(future);
//! // Assume ctx is a `core::task::Context` given out by the executor.
//! // The future is polled, therefore starting the transfer
//! future.as_mut().poll(ctx);
//!
//! // Future is dropped here - transfer is cancelled.
//! }
//!
//! // DANGER: This is an example of undefined behavior
//! {
//! use core::future::Future;
//! use core::ops::DerefMut;
//!
//! let future = core::mem::ManuallyDrop::new(spi.read(&mut buffer));
//! futures::pin_mut!(future);
//! // To actually make this example compile, we would need to wrap the returned
//! // future from `i2c.read()` in a newtype that implements Future, because we
//! // can't actually call as_mut() without being able to name the type we want
//! // to deref to.
//! let future_ref: &mut SomeNewTypeFuture = &mut future.as_mut();
//! future.as_mut().poll(ctx);
//!
//! // Future is NOT dropped here - transfer is not cancelled, resulting un UB.
//! }
//! ```
//!
//! As you can see, unsoundness is relatively hard to come by - however, caution
//! should still be exercised.
//!
//! [`enable`]: Config::enable
//! [`gpio`]: crate::gpio
//! [`Pin`]: crate::gpio::pin::Pin
//! [`PinId`]: crate::gpio::pin::PinId
//! [`PinMode`]: crate::gpio::pin::PinMode
//! [`embedded_hal::spi::SpiBus`]: crate::ehal::spi::SpiBus
//! [`embedded_hal::spi::SpiDevice`]: crate::ehal::spi::SpiDevice
//! [`async_hal`]: crate::async_hal
//! [`forget`]: core::mem::forget
//! [`ManuallyDrop`]: core::mem::ManuallyDrop
//! [`Future`]: core::future::Future
//! [`poll`]: core::future::Future::poll
use core::marker::PhantomData;
use atsamd_hal_macros::{hal_cfg, hal_docs, hal_macro_helper, hal_module};
use bitflags::bitflags;
use num_traits::AsPrimitive;
use crate::ehal;
pub use crate::ehal::spi::{Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
use crate::sercom::{pad::SomePad, ApbClkCtrl, Sercom};
use crate::time::Hertz;
use crate::typelevel::{Is, NoneT, Sealed};
mod reg;
use reg::Registers;
//=============================================================================
// Chip-specific imports
//=============================================================================
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
use crate::pac::sercom0::spi::ctrla::Modeselect;
#[hal_cfg("sercom0-d5x")]
use crate::pac::sercom0::spim::ctrla::Modeselect;
#[hal_module(
any("sercom0-d11", "sercom0-d21") => "spi/pads_thumbv6m.rs",
"sercom0-d5x" => "spi/pads_thumbv7em.rs",
)]
pub mod pads {}
pub use pads::*;
#[hal_module(
any("sercom0-d11", "sercom0-d21") => "spi/char_size.rs",
"sercom0-d5x" => "spi/length.rs",
)]
pub mod size {}
pub use size::*;
/// Valid transaction [`Length`]s from the [`typenum`] crate
#[hal_cfg("sercom0-d5x")]
pub mod lengths {
seq_macro::seq!(N in 1..=255 {
pub use typenum::U~N;
});
}
pub mod impl_ehal;
#[cfg(feature = "async")]
mod async_api;
#[cfg(feature = "async")]
pub use async_api::*;
//=============================================================================
// BitOrder
//=============================================================================
/// Define the bit order of transactions
#[repr(u8)]
#[derive(Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum BitOrder {
LsbFirst,
MsbFirst,
}
//=============================================================================
// Flags
//=============================================================================
const DRE: u8 = 0x01;
const TXC: u8 = 0x02;
const RXC: u8 = 0x04;
const SSL: u8 = 0x08;
const ERROR: u8 = 0x80;
pub const RX_FLAG_MASK: u8 = RXC | ERROR;
pub const TX_FLAG_MASK: u8 = DRE | TXC;
bitflags! {
/// Interrupt bit flags for SPI transactions
///
/// The available interrupt flags are `DRE`, `RXC`, `TXC`, `SSL` and
/// `ERROR`. The binary format of the underlying bits exactly matches the
/// `INTFLAG` register.
#[derive(Clone, Copy)]
pub struct Flags: u8 {
const DRE = DRE;
const TXC = TXC;
const RXC = RXC;
const SSL = SSL;
const ERROR = ERROR;
}
}
#[allow(dead_code)]
impl Flags {
pub(super) const RX: Self = Self::from_bits_retain(RX_FLAG_MASK);
pub(super) const TX: Self = Self::from_bits_retain(TX_FLAG_MASK);
}
//=============================================================================
// Status
//=============================================================================
bitflags! {
/// Status bit flags for SPI transactions
///
/// The available status flags are `BUFOVF` and `LENERR`. The binary format
/// of the underlying bits exactly matches the `STATUS` register.
#[derive(Clone, Copy)]
pub struct Status: u16 {
const BUFOVF = 0x0004;
const LENERR = 0x0800;
}
}
impl Status {
/// Check whether [`Self`] originates from an error.
///
/// # Errors
///
/// Returns an error if `STATUS` contains `BUFOVF` or `LENERR`
pub fn check_bus_error(self) -> Result<(), Error> {
// Buffer overflow has priority
if self.contains(Status::BUFOVF) {
Err(Error::Overflow)
} else if self.contains(Status::LENERR) {
Err(Error::LengthError)
} else {
Ok(())
}
}
}
//=============================================================================
// Error
//=============================================================================
/// Error `enum` for SPI transactions
///
/// The SPI peripheral only has two error types, buffer overflow and transaction
/// length error.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
Overflow,
LengthError,
#[cfg(feature = "dma")]
Dma(crate::dmac::Error),
}
//=============================================================================
// Operating mode
//=============================================================================
/// Type-level enum representing the SPI operating mode
///
/// See the documentation on [type-level enums] for a discussion of the pattern.
///
/// The available operating modes are [`Master`], [`MasterHWSS`] and [`Slave`].
/// In [`Master`] mode, the `SS` signal must be handled by the user, so `SS`
/// must be [`NoneT`]. In [`MasterHWSS`] mode, the hardware drives the `SS`
/// line, so [`SomePad`] is required. In [`Slave`] mode, the `SS` pad is
/// required as well, to indicate when data is valid.
///
/// [type-level enums]: crate::typelevel#type-level-enums
pub trait OpMode: Sealed {
/// Corresponding variant from the PAC enum
const MODE: Modeselect;
/// Bit indicating whether hardware `SS` control is enabled
const MSSEN: bool;
}
/// [`OpMode`] variant for Master mode
pub enum Master {}
/// [`OpMode`] variant for Master mode with hardware-controlled slave select
pub enum MasterHWSS {}
/// [`OpMode`] variant for Slave mode
pub enum Slave {}
impl Sealed for Master {}
impl Sealed for MasterHWSS {}
impl Sealed for Slave {}
impl OpMode for Master {
const MODE: Modeselect = Modeselect::SpiMaster;
const MSSEN: bool = false;
}
impl OpMode for MasterHWSS {
const MODE: Modeselect = Modeselect::SpiMaster;
const MSSEN: bool = true;
}
impl OpMode for Slave {
const MODE: Modeselect = Modeselect::SpiSlave;
const MSSEN: bool = false;
}
/// Marker trait for Master operating modes
///
/// This trait is implemented for [`Master`] and [`MasterHWSS`] but not for
/// [`Slave`].
pub trait MasterMode: OpMode {}
impl MasterMode for Master {}
impl MasterMode for MasterHWSS {}
//=============================================================================
// Size
//=============================================================================
/// Type alias for the width of the `DATA` register
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
pub type DataWidth = u16;
/// Type alias for the width of the `DATA` register
#[hal_cfg("sercom0-d5x")]
pub type DataWidth = u32;
/// Trait alias whose definition varies by chip
///
/// On SAMD11 and SAMD21 chips, this represents the [`CharSize`].
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
pub trait Size: CharSize {}
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
impl<C: CharSize> Size for C {}
/// Type alias for the default [`Size`] type, which varies by chip
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
pub type DefaultSize = EightBit;
/// Trait alias whose definition varies by chip
///
/// On SAMx5x chips, this represents the transaction [`Length`].
#[hal_cfg("sercom0-d5x")]
pub trait Size: Length {}
#[hal_cfg("sercom0-d5x")]
impl<L: Length> Size for L {}
/// Type alias for the default [`Size`] type, which varies by chip
#[hal_cfg("sercom0-d5x")]
pub type DefaultSize = typenum::U1;
//==============================================================================
// AtomicSize
//==============================================================================
/// Marker trait for transaction [`Size`]s that can be completed in a single
/// read or write of the `DATA` register
pub trait AtomicSize: Size {}
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
impl<C: CharSize> AtomicSize for C {}
#[hal_cfg("sercom0-d5x")]
seq_macro::seq!(N in 1..=4 {
impl AtomicSize for lengths::U~N {}
});
//==============================================================================
// Capability
//==============================================================================
/// Type-level enum representing the simplex or duplex transaction capability
///
/// The available, type-level variants are [`Rx`], [`Tx`] and [`Duplex`]. See
/// the [type-level enum] documentation for more details.
///
/// [type-level enum]: crate::typelevel#type-level-enums
pub trait Capability: Sealed + Default {
const RX_ENABLE: bool;
}
/// Sub-set of [`Capability`] variants that can receive data, i.e. [`Rx`] and
/// [`Duplex`]
pub trait Receive: Capability {}
/// Sub-set of [`Capability`] variants that can transmit dat, i.e. [`Tx`] and
/// [`Duplex`]
pub trait Transmit: Capability {}
/// Type-level variant of the [`Capability`] enum for simplex, [`Receive`]-only
/// transactions
///
/// [`Spi`] structs are `Rx` when the `DO` (Data Out) type is [`NoneT`] in the
/// corresponding [`Pads`] struct.
///
/// While the [`Tx`] and [`Duplex`] structs are zero-sized, this struct is not.
/// Because an SPI master must initiate all transactions, using it in a simplex,
/// [`Receive`]-only context is slightly complicated. In that case, the [`Spi`]
/// struct must track whether a transaction needs to be started or is already in
/// progress. This struct contains a `bool` to track that progress.
#[derive(Default)]
pub struct Rx {
pub(super) in_progress: bool,
}
impl Sealed for Rx {}
impl Capability for Rx {
const RX_ENABLE: bool = true;
}
impl Receive for Rx {}
/// Type-level variant of the [`Capability`] enum for simplex, [`Transmit`]-only
/// transactions
///
/// [`Spi`] structs are `Tx` when the `DI` (Data In) type is [`NoneT`] in the
/// corresponding [`Pads`] struct.
#[derive(Default)]
pub struct Tx;
impl Sealed for Tx {}
impl Capability for Tx {
const RX_ENABLE: bool = false;
}
impl Transmit for Tx {}
/// Type-level variant of the [`Capability`] enum for duplex transactions
///
/// [`Spi`] structs are `Duplex` when both the `DI` and `DO` [`Pads`] are
/// [`SomePad`].
/// corresponding [`Pads`] struct.
#[derive(Default)]
pub struct Duplex;
impl Sealed for Duplex {}
impl Capability for Duplex {
const RX_ENABLE: bool = true;
}
impl Receive for Duplex {}
impl Transmit for Duplex {}
//=============================================================================
// Config
//=============================================================================
/// A configurable SPI peripheral in its disabled state
///
/// See the [module-level](super) documentation for more details on declaring
/// and instantiating `Pads` types.
pub struct Config<P, M = Master, Z = DefaultSize>
where
P: ValidPads,
M: OpMode,
Z: Size,
{
regs: Registers<P::Sercom>,
pads: P,
mode: PhantomData<M>,
size: PhantomData<Z>,
freq: Hertz,
nop_word: DataWidth,
}
impl<P: ValidPads> Config<P> {
/// Create a new [`Config`] in the default configuration.
#[inline]
#[hal_macro_helper]
fn default(sercom: P::Sercom, pads: P, freq: impl Into<Hertz>) -> Self {
let mut regs = Registers { sercom };
regs.reset();
regs.set_op_mode(Master::MODE, Master::MSSEN);
regs.set_dipo_dopo(P::DIPO_DOPO);
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
regs.set_char_size(EightBit::BITS);
#[hal_cfg("sercom0-d5x")]
regs.set_length(1);
Self {
regs,
pads,
mode: PhantomData,
size: PhantomData,
freq: freq.into(),
nop_word: 0x00.as_(),
}
}
#[hal_docs(
{
/// Create a new [`Config`] in the default configuration
///
/// This function will enable the corresponding APB clock, reset the
/// [`Sercom`] peripheral, and return a [`Config`] in the default
/// configuration. The default [`OpMode`] is [`Master`], while the default
/// [`Size`] is an
}
any("sercom0-d11", "sercom0-d21") => {
/// [`EightBit`] [`CharSize`]
}
"sercom0-d5x" => {
/// `EightBit` `CharSize`
}
{
/// for SAMD11 and SAMD21 chips or a
}
any("sercom0-d11", "sercom0-d21") => {
/// `Length` of `U1`
}
"sercom0-d5x" => {
/// [`Length`] of `U1`
}
{
/// for SAMx5x chips. Note that [`Config`] takes ownership of both the
/// PAC [`Sercom`] struct as well as the [`Pads`].
///
/// Users must configure GCLK manually. The `freq` parameter represents the
/// GCLK frequency for this [`Sercom`] instance.
}
)]
#[inline]
pub fn new(
apb_clk_ctrl: &ApbClkCtrl,
mut sercom: P::Sercom,
pads: P,
freq: impl Into<Hertz>,
) -> Self {
sercom.enable_apb_clock(apb_clk_ctrl);
Self::default(sercom, pads, freq)
}
}
impl<P, M, Z> Config<P, M, Z>
where
P: ValidPads,
M: OpMode,
Z: Size,
{
/// Change the [`OpMode`] or [`Size`]
#[inline]
fn change<M2, Z2>(self) -> Config<P, M2, Z2>
where
M2: OpMode,
Z2: Size,
{
Config {
regs: self.regs,
pads: self.pads,
mode: PhantomData,
size: PhantomData,
freq: self.freq,
nop_word: self.nop_word,
}
}
/// Obtain a reference to the PAC `SERCOM` struct
///
/// # Safety
///
/// Directly accessing the `SERCOM` could break the invariants of the
/// type-level tracking in this module, so it is unsafe.
#[inline]
pub unsafe fn sercom(&self) -> &P::Sercom {
&self.regs.sercom
}
/// Trigger the [`Sercom`]'s SWRST and return a [`Config`] in the
/// default configuration.
#[inline]
pub fn reset(self) -> Config<P> {
Config::default(self.regs.sercom, self.pads, self.freq)
}
/// Consume the [`Config`], reset the peripheral, and return the [`Sercom`]
/// and [`Pads`]
#[inline]
pub fn free(mut self) -> (P::Sercom, P) {
self.regs.reset();
(self.regs.sercom, self.pads)
}
/// Obtain a pointer to the `DATA` register. Necessary for DMA transfers.
#[inline]
#[cfg(feature = "dma")]
pub(super) fn data_ptr(&self) -> *mut Z::Word {
self.regs.data_ptr::<Z>()
}
/// Change the [`OpMode`]
#[inline]
pub fn op_mode<M2: OpMode>(mut self) -> Config<P, M2, Z> {
self.regs.set_op_mode(M2::MODE, M2::MSSEN);
self.change()
}
/// Change the [`CharSize`] using the builder pattern
#[hal_cfg(any("sercom0-d11", "sercom0-d21"))]
#[inline]
pub fn char_size<C2: CharSize>(mut self) -> Config<P, M, C2> {
self.regs.set_char_size(C2::BITS);
self.change()
}
/// Change the transaction [`Length`] using the builder pattern
///
/// To use a run-time dynamic length, set the [`Length`] type to
/// [`DynLength`] and then use the [`dyn_length`] method.
///
/// [`dyn_length`]: Config::dyn_length
#[hal_cfg("sercom0-d5x")]
#[inline]
pub fn length<L2: Length>(mut self) -> Config<P, M, L2> {
self.regs.set_length(L2::U8);
self.change()
}
/// Get the clock polarity
#[inline]
pub fn get_cpol(&self) -> Polarity {
self.regs.get_cpol()
}
/// Set the clock polarity
#[inline]
pub fn set_cpol(&mut self, cpol: Polarity) {
self.regs.set_cpol(cpol);
}
/// Set the clock polarity using the builder pattern
#[inline]
pub fn cpol(mut self, cpol: Polarity) -> Self {
self.set_cpol(cpol);
self
}
/// Get the clock phase
#[inline]
pub fn get_cpha(&self) -> Phase {
self.regs.get_cpha()
}
/// Set the clock phase
#[inline]
pub fn set_cpha(&mut self, cpha: Phase) {
self.regs.set_cpha(cpha)
}
/// Set the clock phase using the builder pattern
#[inline]
pub fn cpha(mut self, cpha: Phase) -> Self {
self.set_cpha(cpha);
self
}
/// Get the SPI mode (clock polarity & phase)
#[inline]
pub fn get_spi_mode(&self) -> ehal::spi::Mode {
self.regs.get_spi_mode()
}
/// Set the SPI mode (clock polarity & phase)
#[inline]
pub fn set_spi_mode(&mut self, mode: ehal::spi::Mode) {
self.regs.set_spi_mode(mode);
}
/// Set the SPI mode (clock polarity & phase) using the builder pattern
#[inline]
pub fn spi_mode(mut self, mode: ehal::spi::Mode) -> Self {
self.set_spi_mode(mode);
self
}
/// Get the bit order of transmission (MSB/LSB first)
///
/// This only affects the order of bits within each byte. Bytes are always
/// transferred in little endian order from the 32-bit DATA register.
#[inline]
pub fn get_bit_order(&self) -> BitOrder {
self.regs.get_bit_order()
}
/// Set the bit order of transmission (MSB/LSB first) using the builder
/// pattern
///
/// This only affects the order of bits within each byte. Bytes are always
/// transferred in little endian order from the 32-bit DATA register.
#[inline]
pub fn set_bit_order(&mut self, order: BitOrder) {
self.regs.set_bit_order(order);
}
/// Set the bit order of transmission (MSB/LSB first) using the builder
/// pattern
///
/// This only affects the order of bits within each byte. Bytes are always
/// transferred in little endian order from the 32-bit DATA register.
#[inline]
pub fn bit_order(mut self, order: BitOrder) -> Self {
self.set_bit_order(order);
self
}
/// Get the NOP word
///
/// This word is used when reading in Duplex mode, since an equal number of
/// words must be sent in order to avoid overflow errors.
pub fn get_nop_word(&self) -> DataWidth {
self.nop_word
}
/// Set the NOP word
///
/// This word is used when reading in Duplex mode, since an equal number of
/// words must be sent in order to avoid overflow errors.
pub fn set_nop_word(&mut self, nop_word: DataWidth) {
self.nop_word = nop_word;
}
/// Set the NOP word using the builder pattern
///
/// This word is used when reading in Duplex mode, since an equal number of
/// words must be sent in order to avoid overflow errors.
pub fn nop_word(mut self, nop_word: DataWidth) -> Self {
self.nop_word = nop_word;
self
}
/// Get the baud rate
///
/// The returned baud rate may not exactly match what was set.
#[inline]
pub fn get_baud(&mut self) -> Hertz {
self.regs.get_baud(self.freq)
}
/// Set the baud rate
///
/// This function will calculate the best BAUD register setting based on the
/// stored GCLK frequency and desired baud rate. The maximum baud rate is
/// half the GCLK frequency. The minimum baud rate is the GCLK frequency /
/// 512. Values outside this range will saturate at the extremes.
#[inline]
pub fn set_baud(&mut self, baud: Hertz) {
self.regs.set_baud(self.freq, baud);
}
/// Set the baud rate using the builder API
///
/// This function will calculate the best BAUD register setting based on the
/// stored GCLK frequency and desired baud rate. The maximum baud rate is
/// half the GCLK frequency. The minimum baud rate is the GCLK frequency /
/// 512. Values outside this range will saturate at the extremes.
#[inline]
pub fn baud(mut self, baud: Hertz) -> Self {
self.set_baud(baud);
self
}
/// Read the enabled state of the immediate buffer overflow notification
///
/// If set to true, an [`Error::Overflow`] will be issued as soon as an
/// overflow occurs. Otherwise, it will not be issued until its place within
/// the data stream.
#[inline]
pub fn get_ibon(&self) -> bool {
self.regs.get_ibon()
}
/// Enable or disable the immediate buffer overflow notification
///
/// If set to true, an [`Error::Overflow`] will be issued as soon as an
/// overflow occurs. Otherwise, it will not be issued until its place within
/// the data stream.
#[inline]
pub fn set_ibon(&mut self, enabled: bool) {
self.regs.set_ibon(enabled);
}
/// Enable or disable the immediate buffer overflow notification using the
/// builder API
///
/// If set to true, an [`Error::Overflow`] will be issued as soon as an
/// overflow occurs. Otherwise, it will not be issued until its place within
/// the data stream.
#[inline]
pub fn ibon(mut self, enabled: bool) -> Self {
self.set_ibon(enabled);
self
}
/// Read the enable state of run in standby mode
#[inline]
pub fn get_run_in_standby(&self) -> bool {
self.regs.get_run_in_standby()
}
/// Enable or disable run in standby mode
#[inline]
pub fn set_run_in_standby(&mut self, enabled: bool) {
self.regs.set_run_in_standby(enabled);
}
/// Enable or disable run in standby mode using the builder API
#[inline]
pub fn run_in_standby(mut self, enabled: bool) -> Self {
self.set_run_in_standby(enabled);
self
}
/// Enable the SPI peripheral
///
/// SPI transactions are not possible until the peripheral is enabled.
/// This function is limited to [`ValidConfig`]s.
#[inline]
pub fn enable(mut self) -> Spi<Self, P::Capability>
where
Self: ValidConfig,
{
if P::Capability::RX_ENABLE {
self.regs.rx_enable();
}
self.regs.enable();
Spi {
config: self,
capability: P::Capability::default(),
_rx_channel: NoneT,
_tx_channel: NoneT,
}
}
}
#[hal_cfg("sercom0-d5x")]
impl<P, M> Config<P, M, DynLength>
where
P: ValidPads,
M: OpMode,
{
/// Get the transaction length
#[inline]
pub fn get_dyn_length(&self) -> u8 {
self.regs.get_length()
}
/// Set the transaction length
///
/// Write the LENGTH register to set the transaction length. If the length
/// is zero, it will be set to 1.
#[inline]
pub fn set_dyn_length(&mut self, length: u8) {
self.regs.set_length(length);
}
/// Set the transaction length using the builder API
///
/// Write the LENGTH register to set the transaction length. If the length
/// is zero, it will be set to 1.
#[inline]
pub fn dyn_length(mut self, length: u8) -> Self {
self.set_dyn_length(length);
self
}
}
//=============================================================================
// AnyConfig
//=============================================================================
/// Type class for all possible [`Config`] types
///
/// This trait uses the [`AnyKind`] trait pattern to create a [type class] for
/// [`Config`] types. See the `AnyKind` documentation for more details on the
/// pattern.
///
/// In addition to the normal, `AnyKind` associated types. This trait also
/// copies the [`Sercom`], [`Capability`] and [`Word`] types, to make it easier
/// to apply bounds to these types at the next level of abstraction.
///
/// [`AnyKind`]: crate::typelevel#anykind-trait-pattern
/// [type class]: crate::typelevel#type-classes
pub trait AnyConfig: Is<Type = SpecificConfig<Self>> {
type Sercom: Sercom;
type Pads: ValidPads<Sercom = Self::Sercom>;
type Capability: Capability;
type OpMode: OpMode;
type Size: Size;
type Word: 'static;
}
/// Type alias to recover the specific [`Config`] type from an implementation of
/// [`AnyConfig`]
pub type SpecificConfig<C> =
Config<<C as AnyConfig>::Pads, <C as AnyConfig>::OpMode, <C as AnyConfig>::Size>;
impl<P, M, Z> Sealed for Config<P, M, Z>
where
P: ValidPads,
M: OpMode,
Z: Size,
{
}
impl<P, M, Z> AnyConfig for Config<P, M, Z>
where
P: ValidPads,
M: OpMode,
Z: Size,
{
type Sercom = P::Sercom;
type Pads = P;
type Capability = P::Capability;
type OpMode = M;
type Size = Z;
type Word = Z::Word;
}
impl<P, M, Z> AsRef<Self> for Config<P, M, Z>
where
P: ValidPads,
M: OpMode,
Z: Size,
{
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
impl<P, M, Z> AsMut<Self> for Config<P, M, Z>
where
P: ValidPads,
M: OpMode,
Z: Size,
{
#[inline]
fn as_mut(&mut self) -> &mut Self {
self
}
}
//=============================================================================
// ValidConfig
//=============================================================================
/// Marker trait for valid SPI [`Config`]urations
///
/// A functional SPI peripheral must have, at a minimum, an SCLK pad and
/// either a Data In or a Data Out pad. Dependeing on the [`OpMode`], an SS
/// pad may also be required.
///
/// The `ValidConfig` trait is implemented only for valid combinations of
/// [`Pads`] and [`OpMode`]. No [`Config`] is valid if the SCK pad is [`NoneT`]
/// or if both the Data In and Data Out pads are `NoneT`. When in [`Master`]
/// `OpMode`, the `SS` pad must be `NoneT`, while in [`MasterHWSS`] or
/// [`Slave`] [`OpMode`], the SS pad must be [`SomePad`].
pub trait ValidConfig: AnyConfig {}
impl<P, Z> ValidConfig for Config<P, Master, Z>
where
P: ValidPads<SS = NoneT>,
Z: Size,
{
}
impl<P, Z> ValidConfig for Config<P, MasterHWSS, Z>
where
P: ValidPads,
Z: Size,
P::SS: SomePad,
{
}
impl<P, Z> ValidConfig for Config<P, Slave, Z>
where
P: ValidPads,
Z: Size,
P::SS: SomePad,
{
}
//=============================================================================
// Spi
//=============================================================================
/// An enabled SPI peripheral that can perform transactions
///
/// See the [`impl_ehal`] documentation for details on the implementations of
/// the embedded HAL traits, which vary based on [`Size`] and [`Capability`].
pub struct Spi<C, A, RxDma = NoneT, TxDma = NoneT>
where
C: ValidConfig,
A: Capability,
{
config: C,
capability: A,
_rx_channel: RxDma,
_tx_channel: TxDma,
}
/// Get a shared reference to the underlying [`Config`] struct
///
/// This can be used to call the various `get_*` functions on `Config`
impl<C, A> AsRef<SpecificConfig<C>> for Spi<C, A>
where
C: ValidConfig,
A: Capability,
{
#[inline]
fn as_ref(&self) -> &SpecificConfig<C> {
self.config.as_ref()
}
}
impl<C, A, RxDma, TxDma> Spi<C, A, RxDma, TxDma>
where
C: ValidConfig,
A: Capability,
{
/// Obtain a pointer to the `DATA` register. Necessary for DMA transfers.
#[inline]
#[cfg(feature = "dma")]
pub(super) fn data_ptr(&self) -> *mut C::Word
where
C::Size: Size<Word = C::Word>,
{
self.config.as_ref().data_ptr()
}
/// Change the transaction [`Length`]
///
/// Changing the transaction [`Length`] while is enabled is permissible but
/// dangerous. If you have sent or received *any* bytes at the current
/// [`Length`], you **must** wait for a TXC flag before changing to a new
/// [`Length`].
#[inline]
#[allow(clippy::type_complexity)]
#[hal_cfg("sercom0-d5x")]
pub fn length<L: Length>(self) -> Spi<Config<C::Pads, C::OpMode, L>, A, RxDma, TxDma>
where
Config<C::Pads, C::OpMode, L>: ValidConfig,
{
Spi {
config: self.config.into().length(),
capability: self.capability,
_rx_channel: self._rx_channel,
_tx_channel: self._tx_channel,
}
}
/// Update the SPI configuration.
///
/// Calling this method will temporarily disable the SERCOM peripheral, as
/// some registers are enable-protected. This may interrupt any ongoing
/// transactions.
#[inline]
pub fn reconfigure(&mut self, update: impl FnOnce(&mut SpecificConfig<C>)) {
self.config.as_mut().regs.disable();
update(self.config.as_mut());
self.config.as_mut().regs.enable();
}
/// Enable interrupts for the specified flags
#[inline]
pub fn enable_interrupts(&mut self, flags: Flags) {
self.config.as_mut().regs.enable_interrupts(flags)
}
/// Disable interrupts for the specified flags
#[inline]
pub fn disable_interrupts(&mut self, flags: Flags) {
self.config.as_mut().regs.disable_interrupts(flags);
}
/// Read the interrupt flags
#[inline]
pub fn read_flags(&self) -> Flags {
self.config.as_ref().regs.read_flags()
}
/// Clear the corresponding interrupt flags
///
/// Only the ERROR, SSL and TXC flags can be cleared.
///
/// **Note:** The implementation of of [`serial::Write::flush`] waits on and
/// clears the `TXC` flag. Manually clearing this flag could cause it to
/// hang indefinitely.
///
/// [`serial::Write::flush`]: embedded_hal::serial::Write::flush
#[inline]
pub fn clear_flags(&mut self, flags: Flags) {
self.config.as_mut().regs.clear_flags(flags);
}
/// Read the error status flags
#[inline]
pub fn read_status(&self) -> Status {
self.config.as_ref().regs.read_status()
}
/// Clear the corresponding error status flags
#[inline]
pub fn clear_status(&mut self, status: Status) {
self.config.as_mut().regs.clear_status(status);
}
/// Try to read the interrupt flags, but first check the error status flags.
#[inline]
pub fn read_flags_errors(&self) -> Result<Flags, Error> {
self.config.as_ref().regs.read_flags_errors()
}
/// Read from the DATA register
///
/// # Safety
///
/// Reading from the data register directly is `unsafe`, because it will
/// clear the RXC flag, which could break assumptions made elsewhere in
/// this module.
#[inline]
pub unsafe fn read_data(&mut self) -> DataWidth {
self.config.as_mut().regs.read_data()
}
/// Write to the DATA register
///
/// # Safety
///
/// Writing to the data register directly is `unsafe`, because it will clear
/// the DRE flag, which could break assumptions made elsewhere in this
/// module.
#[inline]
pub unsafe fn write_data(&mut self, data: DataWidth) {
self.config.as_mut().regs.write_data(data);
}
/// Disable the SPI peripheral and return the [`Config`] struct
#[inline]
pub fn disable(mut self) -> C {
self.config.as_mut().regs.rx_disable();
self.config.as_mut().regs.disable();
self.config
}
/// Block until at least one of the flags specified in `flags`, or `ERROR`,
/// is set.
///
/// Returns `Err(Error)` if an error is detected; also clears the ERROR
/// interrupt flag and the affected STATUS flags.
fn block_on_flags(&mut self, flags: Flags) -> Result<(), Error> {
while !self.read_flags().intersects(flags | Flags::ERROR) {
core::hint::spin_loop();
}
let flags = self.read_flags();
self.check_and_clear_error(flags)
}
#[inline]
fn check_and_clear_error(&mut self, flags: Flags) -> Result<(), Error> {
if flags.contains(Flags::ERROR) {
let errors = self.read_status();
// Clear all status flags at once; BUFOVF has priority, and will mask LENERR if
// both show up at the same time.
self.clear_status(errors);
self.clear_flags(Flags::ERROR);
return errors.check_bus_error();
}
Ok(())
}
}
impl<C, D> Spi<C, D>
where
C: ValidConfig,
D: Receive,
C::OpMode: MasterMode,
{
/// Attach RX and TX DMA channels to this [`Spi`]. Its
/// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
/// carry out its transactions. In Master mode, since even read SPI
/// transaction necessarily involve a write, [`Rx`]-only must take two
/// DMA channels, just the same as if it were [`Duplex`].
#[cfg(feature = "dma")]
pub fn with_dma_channels<R, T>(self, rx: R, tx: T) -> Spi<C, D, R, T>
where
R: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
T: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
{
Spi {
capability: self.capability,
config: self.config,
_rx_channel: rx,
_tx_channel: tx,
}
}
}
#[cfg(feature = "dma")]
impl<C, D, RxDma, TxDma, S> Spi<C, D, RxDma, TxDma>
where
C: ValidConfig,
D: Capability,
RxDma: crate::dmac::AnyChannel<Status = S>,
TxDma: crate::dmac::AnyChannel<Status = S>,
S: crate::dmac::ReadyChannel,
{
/// Reclaim the DMA channels. Any subsequent SPI transaction will not use
/// DMA.
pub fn take_dma_channels(self) -> (Spi<C, D, NoneT, NoneT>, RxDma, TxDma) {
(
Spi {
capability: self.capability,
config: self.config,
_rx_channel: NoneT,
_tx_channel: NoneT,
},
self._rx_channel,
self._tx_channel,
)
}
}
#[cfg(feature = "dma")]
impl<C> Spi<C, Duplex>
where
C: ValidConfig<OpMode = Slave>,
{
/// Attach a DMA channel to this [`Spi`]. Its
/// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
/// carry out its transactions. In Slave mode, a [`Duplex`] [`Spi`] needs
/// two DMA channels.
#[cfg(feature = "dma")]
pub fn with_dma_channels_slave<R, T>(self, rx: R, tx: T) -> Spi<C, Duplex, R, T>
where
R: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
T: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
{
Spi {
capability: self.capability,
config: self.config,
_rx_channel: rx,
_tx_channel: tx,
}
}
}
#[cfg(feature = "dma")]
impl<C> Spi<C, Rx>
where
C: ValidConfig<OpMode = Slave>,
{
/// Attach a DMA channel to this [`Spi`]. Its
/// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
/// carry out its transactions. In Slave mode, a [`Rx`] [`Spi`] only needs a
/// single DMA channel.
#[cfg(feature = "dma")]
pub fn with_rx_channel<R>(self, rx: R) -> Spi<C, Rx, R, NoneT>
where
R: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
{
Spi {
capability: self.capability,
config: self.config,
_rx_channel: rx,
_tx_channel: NoneT,
}
}
}
#[cfg(feature = "dma")]
impl<C, D, R, T, S> Spi<C, D, R, T>
where
C: ValidConfig,
D: Receive,
R: crate::dmac::AnyChannel<Status = S>,
S: crate::dmac::ReadyChannel,
{
/// Reclaim the Rx DMA channel. Any subsequent SPI transaction will not use
/// DMA.
#[cfg(feature = "dma")]
pub fn take_rx_channel(self) -> (Spi<C, D, NoneT, T>, R) {
(
Spi {
capability: self.capability,
config: self.config,
_tx_channel: self._tx_channel,
_rx_channel: NoneT,
},
self._rx_channel,
)
}
}
#[cfg(feature = "dma")]
impl<C> Spi<C, Tx>
where
C: ValidConfig,
{
/// Attach a DMA channel to this [`Spi`]. Its
/// [`SpiBus`](crate::ehal::spi::SpiBus) implementation will use DMA to
/// carry out its transactions. For [`Tx`] [`Spi`]s, only a single DMA
/// channel is necessary.
#[cfg(feature = "dma")]
pub fn with_tx_channel<T>(self, tx: T) -> Spi<C, Tx, NoneT, T>
where
T: crate::dmac::AnyChannel<Status = crate::dmac::Ready>,
{
Spi {
capability: self.capability,
config: self.config,
_rx_channel: NoneT,
_tx_channel: tx,
}
}
}
#[cfg(feature = "dma")]
impl<C, D, R, T, S> Spi<C, D, R, T>
where
C: ValidConfig,
D: Capability,
T: crate::dmac::AnyChannel<Status = S>,
S: crate::dmac::ReadyChannel,
{
/// Reclaim the DMA channel. Any subsequent SPI transaction will not use
/// DMA.
pub fn take_tx_channel(self) -> (Spi<C, D, R, NoneT>, T) {
(
Spi {
capability: self.capability,
config: self.config,
_rx_channel: self._rx_channel,
_tx_channel: NoneT,
},
self._tx_channel,
)
}
}
/// Wrapper type around a [`Spi`] that allows using
/// [`embedded_hal::spi::SpiBus`] even though it only has RX capability. Will
/// panic if any write-adjacent method is used (ie, `write`, `transfer`,
/// `transfer_in_place`, and `flush`).
///
/// Also implements `Into<Spi>, `AsRef<Spi>` and `AsMut<Spi>` if you need to use
/// `Spi` methods.
///
/// [`embedded_hal::spi::SpiBus`]: crate::ehal::spi::SpiBus
pub struct PanicOnWrite<T: crate::ehal::spi::ErrorType>(T);
impl<C: ValidConfig, R, T> From<PanicOnWrite<Spi<C, Rx, R, T>>> for Spi<C, Rx, R, T> {
fn from(value: PanicOnWrite<Spi<C, Rx, R, T>>) -> Self {
value.0
}
}
impl<C: ValidConfig, R, T> AsRef<Spi<C, Rx, R, T>> for PanicOnWrite<Spi<C, Rx, R, T>> {
fn as_ref(&self) -> &Spi<C, Rx, R, T> {
&self.0
}
}
impl<C: ValidConfig, R, T> AsMut<Spi<C, Rx, R, T>> for PanicOnWrite<Spi<C, Rx, R, T>> {
fn as_mut(&mut self) -> &mut Spi<C, Rx, R, T> {
&mut self.0
}
}
impl<C: ValidConfig, R, T> Spi<C, Tx, R, T> {
/// Turn a [`Tx`] [`Spi`] into a [`PanicOnWrite`]
pub fn into_panic_on_write(self) -> PanicOnWrite<Self> {
PanicOnWrite(self)
}
}
/// Wrapper type around a [`Spi`] that allows using
/// [`embedded_hal::spi::SpiBus`] even though it only has TX capability. Will
/// panic if any write-adjacent method is used (ie, `read`, `transfer`, and
/// `transfer_in_place`).
///
/// Also implements `Into<Spi>, `AsRef<Spi>` and `AsMut<Spi>` if you need to use
/// `Spi` methods.
///
/// [`embedded_hal::spi::SpiBus`]: crate::ehal::spi::SpiBus
pub struct PanicOnRead<T: crate::ehal::spi::ErrorType>(T);
impl<C: ValidConfig, R, T> From<PanicOnRead<Spi<C, Tx, R, T>>> for Spi<C, Tx, R, T> {
fn from(value: PanicOnRead<Spi<C, Tx, R, T>>) -> Self {
value.0
}
}
impl<C: ValidConfig, R, T> AsRef<Spi<C, Tx, R, T>> for PanicOnRead<Spi<C, Tx, R, T>> {
fn as_ref(&self) -> &Spi<C, Tx, R, T> {
&self.0
}
}
impl<C: ValidConfig, R, T> AsMut<Spi<C, Tx, R, T>> for PanicOnRead<Spi<C, Tx, R, T>> {
fn as_mut(&mut self) -> &mut Spi<C, Tx, R, T> {
&mut self.0
}
}
impl<C: ValidConfig, R, T> Spi<C, Tx, R, T> {
/// Turn a [`Rx`] [`Spi`] into a [`PanicOnRead`]
pub fn into_panic_on_read(self) -> PanicOnRead<Self> {
PanicOnRead(self)
}
}
#[hal_cfg("sercom0-d5x")]
impl<P, M, A> Spi<Config<P, M, DynLength>, A>
where
P: ValidPads,
M: OpMode,
Config<P, M, DynLength>: ValidConfig,
A: Capability,
{
/// Return the current transaction length
///
/// Read the LENGTH register to determine the current transaction length
#[inline]
pub fn get_dyn_length(&self) -> u8 {
self.config.get_dyn_length()
}
/// Set the transaction length
///
/// Write the LENGTH register to set the transaction length. Panics if the
/// length is zero.
///
/// Changing the transaction `LENGTH` while is enabled is permissible but
/// dangerous. If you have sent or received *any* bytes at the current
/// `LENGTH`, you **must** wait for a TXC flag before changing to a new
/// `LENGTH`.
#[inline]
pub fn set_dyn_length(&mut self, length: u8) {
self.config.set_dyn_length(length);
}
}
//=============================================================================
// AnySpi
//=============================================================================
/// Type class for all possible [`Spi`] types
///
/// This trait uses the [`AnyKind`] trait pattern to create a [type class] for
/// [`Spi`] types. See the `AnyKind` documentation for more details on the
/// pattern.
///
/// In addition to the normal, `AnyKind` associated types. This trait also
/// copies the [`Sercom`], [`Pads`], [`Capability`], [`OpMode`], [`Size`] and
/// [`Word`] types, to make it easier to apply bounds to these types at the next
/// level of abstraction.
///
/// [`AnyKind`]: crate::typelevel#anykind-trait-pattern
/// [type class]: crate::typelevel#type-classes
pub trait AnySpi: Is<Type = SpecificSpi<Self>> {
type Sercom: Sercom;
type Pads: ValidPads;
type Capability: Capability;
type OpMode: OpMode;
type Size: Size;
type Word: 'static;
type Config: ValidConfig<Sercom = Self::Sercom>;
}
/// Type alias to recover the specific [`Spi`] type from an implementation of
/// [`AnySpi`]
pub type SpecificSpi<S> = Spi<<S as AnySpi>::Config, <S as AnySpi>::Capability>;
impl<C, A> AsRef<Self> for Spi<C, A>
where
C: ValidConfig,
A: Capability,
{
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
impl<C, A> AsMut<Self> for Spi<C, A>
where
C: ValidConfig,
A: Capability,
{
#[inline]
fn as_mut(&mut self) -> &mut Self {
self
}
}
impl<C, A> Sealed for Spi<C, A>
where
C: ValidConfig,
A: Capability,
{
}
impl<C, A> AnySpi for Spi<C, A>
where
C: ValidConfig,
A: Capability,
{
type Sercom = C::Sercom;
type Pads = C::Pads;
type Capability = A;
type OpMode = C::OpMode;
type Size = C::Size;
type Word = C::Word;
type Config = C;
}