atsamd_hal/peripherals/pukcc/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#![warn(missing_docs)]
//! # Public Key Cryptography Controller (PUKCC)
//!
//! This module provides both low and high level abstractions for dealing with
//! a PUKCC peripheral.
//!
//! PUKCC consists of a set of functions (called services) hidden within a
//! reserved region of memory. These functions usually make use of a separate
//! piece of RAM to operate called CryptoRAM.
//!
//! [`c_abi`] module contains raw structs and callable C-like function
//! definitions. [`Pukcc`] wraps this low-level access API and exposes it in a
//! safe manner.
//!
//! ## WARNING!
//! This module has not been evaluated for correctness nor suitability for any
//! use-case. Subtle implementation details may have catastrophic implications
//! for the security of your cryptosystem, and users are advised to engage a
//! cryptographer before making use of this module.
#![allow(clippy::just_underscores_and_digits)]
pub mod c_abi;
pub mod curves;
use core::iter::{once, repeat};
use crate::pac::Mclk;
use c_abi::{u2, u4, CryptoRamSlice, Service};
use curves::Curve;
use rand_core::{CryptoRng, RngCore};
/// This macro linearly copies provided iterable slices/arrays to CryptoRAM and
/// assigns slices to provided declared local variables from outer scope
macro_rules! copy_to_cryptoram {
(
$crypto_ram:expr,
$(
($name:ident, $data:expr)
),+
) =>
{
{
(&[])
.iter()
.cloned()
$(
.chain($data)
)+
.zip($crypto_ram.iter_mut())
.for_each(|(data_iter, cr_iter)| *cr_iter = data_iter);
let mut _offset = 0;
$(
let len = $data.size_hint().1.unwrap_or_else(|| panic!("provided iterator has no size hint"));
$name = &$crypto_ram[_offset.._offset + len];
_offset += len;
)+
}
}
}
/// Struct representing a PUKCC peripheral.
///
/// It provides an access to cryptographic algorithms in a safe, high-level
/// manner
pub struct Pukcc {
__: (),
}
impl Pukcc {
/// Constructor.
///
/// Waits for a CryptoRAM readiness, enables a synchronous PUKCC clock and
/// performs a self test. In case a self test fails it returns an error
pub fn enable(mclk: &mut Mclk) -> Result<Self, SelfTestFailure> {
unsafe {
c_abi::wait_for_crypto_ram_clear_process();
}
mclk.ahbmask().modify(|_, w| w.pukcc_().set_bit());
let pukcc = Self { __: () };
pukcc.self_test().map(|_| pukcc)
}
/// Self test service.
///
/// Clears up a CryptoRAM and does the checksum. If a checksum and a version
/// matches one defined in a HAL, it means that a self test passed
/// successfully.
///
/// While using a high-level API, user should not need to use this service
/// explicitly.
pub fn self_test(&self) -> Result<(), SelfTestFailure> {
const PUKCL_VERSION: u4 = 0x04070100;
const CHECKNUM_1: u4 = 0x6E70DDD2;
const CHECKNUM_2: u4 = 0x25C8D64F;
let mut pukcl_params = c_abi::PukclParams::default();
unsafe {
c_abi::SelfTest::call(&mut pukcl_params);
}
let header = pukcl_params.header;
let service_params = unsafe { pukcl_params.params.SelfTest };
match header.u2Status.into() {
PukclReturnCode::Ok => {}
_ => return Err(SelfTestFailure(service_params)),
};
if service_params.u4Version != PUKCL_VERSION {
return Err(SelfTestFailure(service_params));
}
if service_params.u4CheckNum1 != CHECKNUM_1 {
return Err(SelfTestFailure(service_params));
}
if service_params.u4CheckNum2 != CHECKNUM_2 {
return Err(SelfTestFailure(service_params));
}
Ok(())
}
/// Service generating an ECDSA signature.
///
/// GF(p) service. GF(2^n) variant is not implemented -- use low-level API.
///
/// Input parameters:
/// - `hash`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Hash of a message that is supposed to be signed.
/// - `private_key`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Private key used for signing. Poorly generated `private_key` might
/// have negative security implications.
/// - `k_buffer`: `&mut [u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Mutable buffer that is being populated by an entropy source and
/// then used for signing.
/// - `k_entropy_source`: `&mut (impl RngCore + CryptoRng)`
/// - Generic source of cryptographically secure randomness.
///
/// Output parameters:
/// - `signature`: `&mut [u8]` of length `2 * `[`Curve::MOD_LENGTH`]
/// - Mutable slice that signature will be copied to from CryptoRAM
/// after generation is finished. First [`Curve::MOD_LENGTH`] bytes
/// contain `R` part of a signature. Last [`Curve::MOD_LENGTH`] bytes
/// contain `S` part of a signature.
///
/// Return value:
/// - `Result::Ok`
/// - Signature was generated successfully
/// - `Result::Err`
/// - Possible failure scenarios are encapsulated in a
/// [`EcdsaSignFailure`] enum type
///
/// Note: Provided [`Curve`] needs to be sound. Otherwise, point
/// multiplication can become reversible (lack of _trapdoor function_
/// property) and an attacker might be able to reverse engineer a
/// `private_key` from a `signature`.
pub fn zp_ecdsa_sign_with_entropy<C: Curve>(
&self,
signature: &mut [u8],
hash: &[u8],
private_key: &[u8],
k_buffer: &mut [u8],
k_entropy_source: &mut (impl RngCore + CryptoRng),
) -> Result<(), EcdsaSignFailure> {
k_entropy_source.fill_bytes(k_buffer);
self.zp_ecdsa_sign::<C>(signature, hash, private_key, k_buffer)
}
/// Service generating an ECDSA signature.
///
/// GF(p) service. GF(2^n) variant is not implemented -- use low-level API.
///
/// Input parameters:
/// - `hash`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Hash of a message that is supposed to be signed.
/// - `private_key`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Private key used for signing. Poorly generated `private_key` might
/// have negative security implications.
/// - `k`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - A random number used for signature generation. It is heavily
/// encouraged to use cryptographically-secure random number
/// generators. One should never use the same `k` more than once.
/// Private key can be extracted from signatures generated with a
/// poorly randomized / the same `k` value.
///
/// Exact same set of input parameters (hash, private_key and k) produces
/// exactly the same signature.
///
/// Output parameters:
/// - `signature`: `&mut [u8]` of length `2 * `[`Curve::MOD_LENGTH`]
/// - Mutable slice that signature will be copied to from CryptoRAM
/// after generation is finished. First [`Curve::MOD_LENGTH`] bytes
/// contain `R` part of a signature. Last [`Curve::MOD_LENGTH`] bytes
/// contain `S` part of a signature.
///
/// Return value:
/// - `Result::Ok`
/// - Signature was generated successfully
/// - `Result::Err`
/// - Possible failure scenarios are encapsulated in a
/// [`EcdsaSignFailure`] enum type
///
/// Note: Provided [`Curve`] needs to be sound. Otherwise, point
/// multiplication can become reversible (lack of _trapdoor function_
/// property) and an attacker might be able to reverse engineer a
/// `private_key` from a `signature`.
///
/// # Safety
///
/// `k` value must be cryptographically secure.
pub unsafe fn zp_ecdsa_sign_with_raw_k<C: Curve>(
&self,
signature: &mut [u8],
hash: &[u8],
private_key: &[u8],
k: &[u8],
) -> Result<(), EcdsaSignFailure> {
self.zp_ecdsa_sign::<C>(signature, hash, private_key, k)
}
fn zp_ecdsa_sign<C: Curve>(
&self,
signature: &mut [u8],
hash: &[u8],
private_key: &[u8],
k: &[u8],
) -> Result<(), EcdsaSignFailure> {
C::verify_curve().map_err(EcdsaSignFailure::InvalidCurve)?;
if signature.len() != (2 * C::MOD_LENGTH).into() {
return Err(EcdsaSignFailure::WrongInputParameterLength {
faulty_slice: "signature",
expected_length: (2 * C::MOD_LENGTH).into(),
actual_length: signature.len(),
});
}
if hash.len() != (C::SCALAR_LENGTH).into() {
return Err(EcdsaSignFailure::WrongInputParameterLength {
faulty_slice: "hash",
expected_length: (C::SCALAR_LENGTH).into(),
actual_length: hash.len(),
});
}
if private_key.len() != (C::SCALAR_LENGTH).into() {
return Err(EcdsaSignFailure::WrongInputParameterLength {
faulty_slice: "private_key",
expected_length: (C::SCALAR_LENGTH).into(),
actual_length: private_key.len(),
});
}
if k.len() != (C::SCALAR_LENGTH).into() {
return Err(EcdsaSignFailure::WrongInputParameterLength {
faulty_slice: "k",
expected_length: (C::SCALAR_LENGTH).into(),
actual_length: k.len(),
});
}
let (
modulo_p,
a_curve,
base_point_a_x,
base_point_a_y,
base_point_a_z,
order_point,
cns,
hash_cr,
private_key_cr,
k_cr,
workspace,
mut __,
);
let mut crypto_ram = unsafe { c_abi::CryptoRam::new() };
// 32-byte padding with zeroes on a MSB side of every parameter is required by
// PUKCC algorithms. Little endianness requires padding *after* a parameter
// as MSB is placed on high addresses.
// 32-byte zero padding for curve parameters should be included in original
// slices.
copy_to_cryptoram! {
crypto_ram,
(modulo_p, C::MODULO_P.iter().cloned().rev()),
(a_curve, C::A_CURVE.iter().cloned().rev()),
(base_point_a_x, C::BASE_POINT_A_X.iter().cloned().rev()),
(base_point_a_y, C::BASE_POINT_A_Y.iter().cloned().rev()),
(base_point_a_z, C::BASE_POINT_A_Z.iter().cloned().rev()),
(order_point, C::ORDER_POINT.iter().cloned().rev()),
(cns, C::CNS.iter().cloned().rev()),
(hash_cr, hash.iter().cloned().rev()),
(__, repeat(0).take(4)),
(private_key_cr, private_key.iter().cloned().rev()),
(__, repeat(0).take(4)),
(k_cr, k.iter().cloned().rev()),
(__, repeat(0).take(4)),
// Workspace is just marked with a zero length iterator just to get its address.
// As it is placed at the end, idea is that algorithm will use whatever amount
// of memory it needs
(workspace, 0..0)
};
let mut pukcl_params = c_abi::PukclParams::default();
unsafe {
let service_params = &mut pukcl_params.params.ZpEcDsaGenerateFast;
service_params.nu1ModBase = modulo_p.pukcc_base();
service_params.nu1CnsBase = cns.pukcc_base();
service_params.u2ModLength = C::MOD_LENGTH;
service_params.nu1ScalarNumber = k_cr.pukcc_base();
service_params.nu1OrderPointBase = order_point.pukcc_base();
service_params.nu1PrivateKey = private_key_cr.pukcc_base();
service_params.nu1HashBase = hash_cr.pukcc_base();
service_params.u2ScalarLength = C::SCALAR_LENGTH;
service_params.nu1PointABase = base_point_a_x.pukcc_base();
service_params.nu1ABase = a_curve.pukcc_base();
service_params.nu1Workspace = workspace.pukcc_base();
}
unsafe { c_abi::ZpEcDsaGenerateFast::call(&mut pukcl_params) };
match pukcl_params.header.u2Status.into() {
PukclReturnCode::Ok => {}
error_code => return Err(EcdsaSignFailure::ServiceFailure(error_code)),
};
// Generated signature R part is written to base point X coordinate memory.
// Generated signature S part is written to base point Y coordinate memory.
// Base point Z coordinate should be zero.
if !base_point_a_z.iter().all(|&el| el == 0) {
return Err(EcdsaSignFailure::BasePointZCoordinateIsNotZero);
}
// Copying signature back from the CryptoRAM while ignoring irrelevant padding.
signature
.iter_mut()
.zip(
base_point_a_x
.iter()
.rev()
.skip(4)
.chain(base_point_a_y.iter().rev().skip(4)),
)
.for_each(|(target_iter, source_iter)| *target_iter = *source_iter);
Ok(())
}
/// Service verifying an ECDSA signature.
///
/// GF(p) service. GF(2^n) variant is not implemented -- use low-level API.
///
/// Input parameters:
/// - `signature`: `&[u8]` of length `2 * `[`Curve::SCALAR_LENGTH`]
/// - Signature that is being verified
/// - `hash`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Hash of a message that is signed.
/// - `public_key`: `&[u8]` of length [`Curve::SCALAR_LENGTH`]
/// - Public key used for a signature verification.
///
/// Return value:
/// - `Result::Ok`
/// - Signature is valid against chosen `hash` and `public_key`
/// - `Result::Err`
/// - Possible failure scenarios are encapsulated in a
/// [`EcdsaSignatureVerificationFailure`] enum type
///
/// In case of an invalid signature the returned error type will be
/// [`EcdsaSignatureVerificationFailure::ServiceFailure`]`(`
/// [`Warning`][`PukclReturnCode::Warning`]`(`
/// [`WrongSignature`][`PukclReturnCodeWarning::WrongSignature`]`))`
pub fn zp_ecdsa_verify_signature<C: Curve>(
&self,
signature: &[u8],
hash: &[u8],
public_key: &[u8],
) -> Result<(), EcdsaSignatureVerificationFailure> {
C::verify_curve().map_err(EcdsaSignatureVerificationFailure::InvalidCurve)?;
let (
modulo_p,
a_curve,
base_point_a_x,
order_point,
cns,
signature_cr,
hash_cr,
public_key_cr,
workspace,
mut __,
);
if signature.len() != (2 * C::SCALAR_LENGTH).into() {
return Err(
EcdsaSignatureVerificationFailure::WrongInputParameterLength {
faulty_slice: "signature",
expected_length: (2 * C::SCALAR_LENGTH).into(),
actual_length: signature.len(),
},
);
}
if hash.len() != (C::SCALAR_LENGTH).into() {
return Err(
EcdsaSignatureVerificationFailure::WrongInputParameterLength {
faulty_slice: "hash",
expected_length: (C::SCALAR_LENGTH).into(),
actual_length: hash.len(),
},
);
}
if public_key.len() != (2 * C::MOD_LENGTH).into() {
return Err(
EcdsaSignatureVerificationFailure::WrongInputParameterLength {
faulty_slice: "public_key",
expected_length: (2 * C::MOD_LENGTH).into(),
actual_length: public_key.len(),
},
);
}
let mut crypto_ram = unsafe { c_abi::CryptoRam::new() };
// 32-byte padding with zeroes on a MSB side of every parameter is required by
// PUKCC algorithms. Little endianness requires padding *after* a parameter
// as MSB is placed on high addresses.
// 32-byte zero padding for curve parameters should be included in original
// slices.
copy_to_cryptoram! {
crypto_ram,
(modulo_p, C::MODULO_P.iter().cloned().rev()),
(a_curve, C::A_CURVE.iter().cloned().rev()),
(base_point_a_x, C::BASE_POINT_A_X.iter().cloned().rev()),
(__, C::BASE_POINT_A_Y.iter().cloned().rev()),
(__, C::BASE_POINT_A_Z.iter().cloned().rev()),
(order_point, C::ORDER_POINT.iter().cloned().rev()),
(cns, C::CNS.iter().cloned().rev()),
// Signature has to be split into two parts + padding must be added
// Signature layout:
// [ R: (little endian) ][ 0_u32 ]..
(signature_cr, signature.iter().cloned().take(C::SCALAR_LENGTH.into()).rev()),
(__, repeat(0).take(4)),
// ..[ S: (little endian) ][ 0_u32 ]
(__, signature.iter().cloned().skip(C::SCALAR_LENGTH.into()).take(C::SCALAR_LENGTH.into()).rev()),
(__, repeat(0).take(4)),
(hash_cr, hash.iter().cloned().rev()),
(__, repeat(0).take(4)),
// Public key has to be represented as a point + padding must be added
// Public key layout:
// [ X coordinate: (little endian) ][ 0_u32 ]..
(public_key_cr, public_key.iter().cloned().take(C::MOD_LENGTH.into()).rev()),
(__, repeat(0).take(4)),
// ..[ Y coordinate: (little endian) ][ 0_u32 ]
(__, public_key.iter().cloned().skip(C::MOD_LENGTH.into()).take(C::MOD_LENGTH.into()).rev()),
(__, repeat(0).take(4)),
// ..[ Z coordinate: (little endian) ][ 0_u32 ] == 1
(__, once(1).chain(repeat(0).take((C::MOD_LENGTH - 1).into()))),
(__, repeat(0).take(4)),
// Workspace is just marked with a zero length iterator just to get its address.
// As it is placed at the end, idea is that algorithm will use whatever amount
// of memory it needs
(workspace, 0..0)
};
let mut pukcl_params = c_abi::PukclParams::default();
unsafe {
let service_params = &mut pukcl_params.params.ZpEcDsaVerifyFast;
service_params.nu1ModBase = modulo_p.pukcc_base();
service_params.nu1CnsBase = cns.pukcc_base();
service_params.u2ModLength = C::MOD_LENGTH;
service_params.nu1OrderPointBase = order_point.pukcc_base();
service_params.nu1PointSignature = signature_cr.pukcc_base();
service_params.nu1HashBase = hash_cr.pukcc_base();
service_params.u2ScalarLength = C::SCALAR_LENGTH;
service_params.nu1PointABase = base_point_a_x.pukcc_base();
service_params.nu1PointPublicKeyGen = public_key_cr.pukcc_base();
service_params.nu1ABase = a_curve.pukcc_base();
service_params.nu1Workspace = workspace.pukcc_base();
}
unsafe { c_abi::ZpEcDsaVerifyFast::call(&mut pukcl_params) };
match pukcl_params.header.u2Status.into() {
PukclReturnCode::Ok => Ok(()),
error_code => Err(EcdsaSignatureVerificationFailure::ServiceFailure(
error_code,
)),
}
}
/// Service performing a modular exponentiation.
///
/// ```text
/// result = pow(input, exponent) % modulus
/// ```
///
/// Input parameters:
/// - `input`: `&[u8]`
/// - Requirements:
/// - `len(input) <= len(modulus)`
/// - Message, hash, any slice of data that will undergo modular
/// exponentiation
/// - `exponent`: `&[u8]`
/// - Requirements:
/// - `len(exponent) <= len(modulus)`
/// - `modulus`: `&[u8]`
/// - Requirements:
/// - `len(modulus) % 4`
/// - `12 <= len(modulus) < ?`
/// - Note: Maximum size depends on few factors like CryptoRAM and
/// workspace window size. Consult the table with data layout down
/// below.
/// - `mode`: [`ExpModMode`]
/// - Mode of operation: use regular or fast variant of the underlying
/// algorithm
/// - This parameter does not influence the end result of a computation
/// - `window_size`: [`ExpModWindowSize`]
/// - Enum describing 4 predefined workspace sizes (from smallest to
/// biggest) in CryptoRAM.
/// - Bigger the workspace size - faster the algorithm can operate -
/// greater limitations on input parameters are put (as they occupy
/// CryptoRAM address space as well). Consult the table with data
/// layout down below.
/// - This parameter does not influence the end result of a computation
/// - `buffer`: `&'a mut [u8]`
/// - Requirements:
/// - `len(buffer) >= len(modulus) + 5`
/// - Buffer used internally for CNS calculation. Piece of it is used
/// also for a return value.
///
/// Return value:
/// - `Result::Ok(&'a [u8])`
/// - Length: `len(modulus)`
/// - A result of modular exponentiation
/// - `Result::Err`
/// - Possible failure scenarios are encapsulated in a [`ExpModFailure`]
/// enum type
///
/// Failing to meet the requirements for any input parameter will end up
/// with an error being returned.
///
/// CryptoRAM is `4KiB` (`0x1000` bytes) in size. Data layout in CryptoRAM
/// looks as follows and its size cannot go over the threshold of `4KiB`.
///
/// ```text
/// - modulus: len(modulus) + 4
/// - cns (reduction constant): len(modulus) + 8
/// - output/input (after/before calculation): len(modulus) + 16
/// - exponent: len(exponent) + 4 (+ padding to be % 4)
/// - workspace: (depending on `window_size`)
/// - ExpModWindowSize::One => 3 * (modulus.len() + 4) + 8
/// - ExpModWindowSize::Two => 4 * (modulus.len() + 4) + 8
/// - ExpModWindowSize::Three => 6 * (modulus.len() + 4) + 8
/// - ExpModWindowSize::Four => 10 * (modulus.len() + 4) + 8
/// ```
///
/// # RSA
///
/// This function can be used to perform RSA related computation like
/// encryption, decryption, signature generation and validation.
/// - To **encrypt** `input` value, split _public key_ into _public_
/// `exponent` and `modulus` and pass them into the function. Return value
/// is going to be a cipher of an `input`.
/// - To **decrypt** `input` value, split _private key_ into _private_
/// `exponent` and `modulus` and pass them into the function. Return value
/// is going to be a decrypted `input`.
/// - To **generate a signature**, pass the _hash_ of a message being signed
/// as an `input` into the function and use a _private key_. Return value
/// is going to be a signature (encrypted _hash_).
/// - To **validate a signature**, pass it as an `input` into the function
/// and use the _public key_. Decrypted signature is an expected hash of a
/// message. Calculate the hash of your message and compare it with an
/// expected value. If they are the same, validation can be considered
/// successful.
///
/// All RSA variants up to **RSA4096** (included) will fit into CryptoRAM
/// and therefore are supported.
pub fn modular_exponentiation<'a>(
&self,
input: &[u8],
exponent: &[u8],
modulus: &[u8],
mode: ExpModMode,
window_size: ExpModWindowSize,
buffer: &'a mut [u8],
) -> Result<&'a [u8], ExpModFailure> {
const PUKCL_EXPMOD_EXPINPUKCCRAM: u16 = 0x02;
// Modulus validation
if modulus.len() % 4 != 0 {
return Err(ExpModFailure::WrongInputParameterAlignment {
faulty_slice: "modulus",
});
}
// Modulus size must be at least 12 bytes (43.3.5.2.3 of DS60001507F datasheet)
const MINIMUM_MODULUS_LEN: usize = 12;
if modulus.len() < MINIMUM_MODULUS_LEN {
return Err(ExpModFailure::WrongInputParameterLength {
faulty_slice: "modulus",
actual_length: modulus.len(),
expected_length: ExpectedLengthError::AtLeast(MINIMUM_MODULUS_LEN),
});
}
// Input validation
// Note: Only length is checked but in theory value itself being larger than
// modulus is probably wrong as well
if input.len() > modulus.len() {
return Err(ExpModFailure::WrongInputParameterLength {
faulty_slice: "input",
actual_length: input.len(),
expected_length: ExpectedLengthError::AtMost(modulus.len()),
});
}
// Exponent validation
// Note: Only length is checked but in theory value itself being larger than
// modulus is probably wrong as well
if exponent.len() > modulus.len() {
return Err(ExpModFailure::WrongInputParameterLength {
faulty_slice: "exponent",
actual_length: exponent.len(),
expected_length: ExpectedLengthError::AtMost(modulus.len()),
});
}
let (modulus_cr, cns_cr, output, workspace, exponent_cr, mut __);
let cns = self.zp_calculate_cns(buffer, modulus)?;
let padding_for_cns = padding_for_len(cns.len());
// Sanity check in case someone changes `zp_calculate_cns` implementation
assert!(cns.len() + padding_for_cns == modulus.len() + 8);
let padding_for_exponent = padding_for_len(exponent.len());
let mut crypto_ram = unsafe { c_abi::CryptoRam::new() };
// 32-byte padding with zeroes on a MSB side of every parameter is required by
// PUKCC algorithms (unless said otherwise). Little endianness requires padding
// *after* a parameter as MSB is placed on high addresses.
copy_to_cryptoram! {
crypto_ram,
(modulus_cr, modulus.iter().cloned().rev()),
(__, repeat(0).take(4)),
(cns_cr, cns.iter().cloned().rev()),
(__, repeat(0).take(padding_for_cns)),
// 1. `input` is replaced with an outcome of the computation
// 2. `input` is padded to match `len(modulus)`
(output, input.iter().cloned().rev().chain(repeat(0).take(modulus.len() - input.len()))),
// `input` area is used for computation and requires additional 4 0_u32 on MSB side
(__, repeat(0).take(16)),
// Exponent is required to have 0_u32 on LSB side
// `exponent_cr` is only used to get a pointer during `pukcl_params` initialization
(exponent_cr, repeat(0).take(4)),
(__, exponent.iter().cloned().rev()),
(__, repeat(0).take(padding_for_exponent)),
// Workspace is just marked with a zero length slice just to get its address. As
// it is placed at the end, idea is that algorithm will use whatever amount of
// memory it needs
(workspace, 0..0)
};
// Table 43-52; 43.3.5.2.5 in DS60001507F
let workspace_len: usize = match window_size {
ExpModWindowSize::One => 3 * (modulus.len() + 4) + 8,
ExpModWindowSize::Two => 4 * (modulus.len() + 4) + 8,
ExpModWindowSize::Three => 6 * (modulus.len() + 4) + 8,
ExpModWindowSize::Four => 10 * (modulus.len() + 4) + 8,
};
let workspace_end_ptr = workspace.as_ptr().wrapping_add(workspace_len);
let crypto_ram_end_ptr = crypto_ram.as_ptr_range().end;
if workspace_end_ptr > crypto_ram_end_ptr {
return Err(ExpModFailure::RunOutOfCryptoRam {
workspace_end_ptr,
crypto_ram_end_ptr,
});
}
let mut pukcl_params = c_abi::PukclParams::default();
unsafe {
// Note: `exponent` outside of Crypto RAM is not supported
pukcl_params.header.u2Option = PUKCL_EXPMOD_EXPINPUKCCRAM
| window_size.get_windows_size_mask()
| mode.get_mode_mask();
let service_params = &mut pukcl_params.params.ExpMod;
service_params.nu1XBase = output.pukcc_base();
service_params.nu1ModBase = modulus_cr.pukcc_base();
service_params.nu1CnsBase = cns_cr.pukcc_base();
service_params.nu1PrecompBase = workspace.pukcc_base();
service_params.pfu1ExpBase = exponent_cr.as_ptr() as _;
service_params.u2ModLength = modulus.len() as _;
service_params.u2ExpLength = (exponent.len() + padding_for_exponent) as _;
service_params.u1Blinding = 0;
}
unsafe { c_abi::ExpMod::call(&mut pukcl_params) };
match pukcl_params.header.u2Status.into() {
PukclReturnCode::Ok => {}
error_code => return Err(ExpModFailure::ServiceFailure(error_code)),
}
buffer
.iter_mut()
.zip(output.iter().rev())
.for_each(|(target_iter, source_iter)| *target_iter = *source_iter);
Ok(&buffer[..modulus.len()])
}
/// Service producing a reduction constant value
fn zp_calculate_cns<'a>(
&self,
buffer: &'a mut [u8],
modulus: &[u8],
) -> Result<&'a [u8], CalculateCnsFailure> {
const PUKCL_REDMOD_SETUP: u16 = 0x0100;
if modulus.len() % 4 != 0 {
return Err(CalculateCnsFailure::WrongInputParameterAlignment {
faulty_slice: "modulus",
});
}
// Even though documentation says that CNS occupies len(modulus) + 12 of space,
// it is only needed for computation, 7 MSB bytes are zeroes. This distinction
// between lengths allows to skip these 7 MSB zero bytes.
let cns_length = modulus.len() + 12;
let actual_cns_length = modulus.len() + 5;
if buffer.len() < actual_cns_length {
return Err(CalculateCnsFailure::WrongInputParameterLength {
faulty_slice: "buffer",
actual_length: buffer.len(),
expected_length: ExpectedLengthError::AtLeast(actual_cns_length),
});
}
let (modulus_cr, cns_cr, workspace_r, workspace_x, mut __);
let mut crypto_ram = unsafe { c_abi::CryptoRam::new() };
copy_to_cryptoram! {
crypto_ram,
(modulus_cr, modulus.iter().cloned().rev()),
(__, repeat(0).take(4)),
(cns_cr, repeat(0).take(actual_cns_length)),
(__, repeat(0).take(cns_length - actual_cns_length)),
// GF(p) -> 64 bytes
(workspace_r, repeat(0).take(64)),
(workspace_x, 0..0)
};
let mut pukcl_params = c_abi::PukclParams::default();
unsafe {
// Flag that switches behaviour of `RedMod` service into CNS generator
pukcl_params.header.u2Option = PUKCL_REDMOD_SETUP;
let service_params = &mut pukcl_params.params.RedMod;
service_params.nu1ModBase = modulus_cr.pukcc_base();
service_params.nu1CnsBase = cns_cr.pukcc_base();
service_params.u2ModLength = modulus.len() as _;
service_params.nu1RBase = workspace_r.pukcc_base();
service_params.nu1XBase = workspace_x.pukcc_base();
}
unsafe { c_abi::RedMod::call(&mut pukcl_params) };
match pukcl_params.header.u2Status.into() {
PukclReturnCode::Ok => {}
error_code => return Err(CalculateCnsFailure::ServiceFailure(error_code)),
}
buffer
.iter_mut()
.zip(cns_cr.iter().rev())
.for_each(|(target_iter, source_iter)| *target_iter = *source_iter);
Ok(&buffer[..actual_cns_length])
}
}
/// An error type representing failure modes a [`Pukcc::self_test`] service
#[derive(Debug)]
#[allow(dead_code)]
pub struct SelfTestFailure(c_abi::SelfTest);
/// An error type representing failure modes for a
/// [`Pukcc::zp_ecdsa_sign_with_entropy`] and
/// [`Pukcc::zp_ecdsa_sign_with_raw_k`] service
#[allow(missing_docs)]
#[derive(Debug)]
pub enum EcdsaSignFailure {
WrongInputParameterLength {
faulty_slice: &'static str,
expected_length: usize,
actual_length: usize,
},
InvalidCurve(curves::CurveVerificationFailure),
BasePointZCoordinateIsNotZero,
ServiceFailure(PukclReturnCode),
}
/// An error type representing failure modes for a
/// [`Pukcc::zp_ecdsa_verify_signature`] service
#[allow(missing_docs)]
#[derive(Debug)]
pub enum EcdsaSignatureVerificationFailure {
WrongInputParameterLength {
faulty_slice: &'static str,
expected_length: usize,
actual_length: usize,
},
InvalidCurve(curves::CurveVerificationFailure),
ServiceFailure(PukclReturnCode),
}
/// An error type specifying an expected length of a slice in question
#[allow(missing_docs)]
#[derive(Debug)]
pub enum ExpectedLengthError {
AtMost(usize),
AtLeast(usize),
Exactly(usize),
}
/// An enum describing available modes of operation of
/// `Pukcc::modular_exponentiation` algoritm
#[allow(missing_docs)]
#[derive(Debug)]
pub enum ExpModMode {
Regular,
Fast,
}
impl ExpModMode {
/// Function mapping the enum variant with a low level mask value needed in
/// [`c_abi::PukclHeader::u2Option`] for [`c_abi::ExpMod`] service
pub fn get_mode_mask(&self) -> u2 {
use ExpModMode::*;
match self {
Regular => 0x01,
Fast => 0x04,
}
}
}
/// An enum describing allowed, predefined window sizes for a calculation
/// workspace in CryptoRAM for [`Pukcc::modular_exponentiation`] algorithm
#[allow(missing_docs)]
#[derive(Debug)]
pub enum ExpModWindowSize {
/// 3 * (len(modulus) + 4) + 8 bytes allowed to be used as a workspace
One,
/// 4 * (len(modulus) + 4) + 8 bytes allowed to be used as a workspace
Two,
/// 6 * (len(modulus) + 4) + 8 bytes allowed to be used as a workspace
Three,
/// 10 * (len(modulus) + 4) + 8 bytes allowed to be used as a workspace
Four,
}
impl ExpModWindowSize {
/// Function mapping the enum variant with a low level mask value needed in
/// [`c_abi::PukclHeader::u2Option`] for [`c_abi::ExpMod`] service
pub fn get_windows_size_mask(&self) -> u2 {
use ExpModWindowSize::*;
match self {
One => 0x00,
Two => 0x08,
Three => 0x10,
Four => 0x18,
}
}
}
/// An error type representing failure modes for a
/// [`Pukcc::modular_exponentiation`] service
#[allow(missing_docs)]
#[derive(Debug)]
pub enum ExpModFailure {
WrongInputParameterLength {
faulty_slice: &'static str,
expected_length: ExpectedLengthError,
actual_length: usize,
},
/// Should be 4-aligned
WrongInputParameterAlignment {
faulty_slice: &'static str,
},
RunOutOfCryptoRam {
workspace_end_ptr: *const u8,
crypto_ram_end_ptr: *const u8,
},
CalculateCnsFailure(CalculateCnsFailure),
ServiceFailure(PukclReturnCode),
}
/// An error type representing failure modes for a
/// `Pukcc::zp_calculate_cns` service
#[allow(missing_docs)]
#[derive(Debug)]
pub enum CalculateCnsFailure {
WrongInputParameterLength {
faulty_slice: &'static str,
expected_length: ExpectedLengthError,
actual_length: usize,
},
/// Should be 4-aligned
WrongInputParameterAlignment {
faulty_slice: &'static str,
},
ServiceFailure(PukclReturnCode),
}
impl From<CalculateCnsFailure> for ExpModFailure {
fn from(f: CalculateCnsFailure) -> Self {
ExpModFailure::CalculateCnsFailure(f)
}
}
// PukclReturnCode <-> c_abi::PukclReturnCode
impl core::convert::From<c_abi::PukclReturnCode> for PukclReturnCode {
fn from(v: c_abi::PukclReturnCode) -> Self {
use PukclReturnCode::*;
match v.0 {
0x0000 => Ok,
0xC001 => Severe(PukclReturnCodeSevere::ComputationNotStarted),
0xC002 => Severe(PukclReturnCodeSevere::UnknownService),
0xC003 => Severe(PukclReturnCodeSevere::UnexploitableOptions),
0xC004 => Severe(PukclReturnCodeSevere::HardwareIssue),
0xC005 => Severe(PukclReturnCodeSevere::WrongHardware),
0xC006 => Severe(PukclReturnCodeSevere::LibraryMalformed),
0xC007 => Severe(PukclReturnCodeSevere::Error),
0xC008 => Severe(PukclReturnCodeSevere::UnknownSubservice),
0xC010 => Severe(PukclReturnCodeSevere::OverlapNotAllowed),
0xC011 => Severe(PukclReturnCodeSevere::ParamNotInPukccram),
0xC012 => Severe(PukclReturnCodeSevere::ParamNotInRam),
0xC013 => Severe(PukclReturnCodeSevere::ParamNotInCpuram),
0xC014 => Severe(PukclReturnCodeSevere::ParamWrongLength),
0xC015 => Severe(PukclReturnCodeSevere::ParamBadAlignment),
0xC016 => Severe(PukclReturnCodeSevere::ParamXBiggerThanY),
0xC017 => Severe(PukclReturnCodeSevere::ParamLengthTooSmall),
0xC101 => Severe(PukclReturnCodeSevere::DivisionByZero),
0xC102 => Severe(PukclReturnCodeSevere::MalformedModulus),
0xC103 => Severe(PukclReturnCodeSevere::FaultDetected),
0xC104 => Severe(PukclReturnCodeSevere::MalformedKey),
0xC105 => Severe(PukclReturnCodeSevere::AprioriOk),
0xC106 => Severe(PukclReturnCodeSevere::WrongService),
0x8001 => Warning(PukclReturnCodeWarning::PointAtInfinity),
0x8002 => Warning(PukclReturnCodeWarning::WrongSignature),
0x8003 => Warning(PukclReturnCodeWarning::WrongSelectnumber),
0x8004 => Warning(PukclReturnCodeWarning::PointIsNotOnCurve),
0x4001 => Info(PukclReturnCodeInfo::NumberIsNotPrime),
0x4002 => Info(PukclReturnCodeInfo::NumberIsPrime),
code => Unknown { code },
}
}
}
impl core::convert::From<PukclReturnCode> for c_abi::PukclReturnCode {
fn from(v: PukclReturnCode) -> Self {
use PukclReturnCode::*;
Self(match v {
Ok => 0x0000,
Severe(PukclReturnCodeSevere::ComputationNotStarted) => 0xC001,
Severe(PukclReturnCodeSevere::UnknownService) => 0xC002,
Severe(PukclReturnCodeSevere::UnexploitableOptions) => 0xC003,
Severe(PukclReturnCodeSevere::HardwareIssue) => 0xC004,
Severe(PukclReturnCodeSevere::WrongHardware) => 0xC005,
Severe(PukclReturnCodeSevere::LibraryMalformed) => 0xC006,
Severe(PukclReturnCodeSevere::Error) => 0xC007,
Severe(PukclReturnCodeSevere::UnknownSubservice) => 0xC008,
Severe(PukclReturnCodeSevere::OverlapNotAllowed) => 0xC010,
Severe(PukclReturnCodeSevere::ParamNotInPukccram) => 0xC011,
Severe(PukclReturnCodeSevere::ParamNotInRam) => 0xC012,
Severe(PukclReturnCodeSevere::ParamNotInCpuram) => 0xC013,
Severe(PukclReturnCodeSevere::ParamWrongLength) => 0xC014,
Severe(PukclReturnCodeSevere::ParamBadAlignment) => 0xC015,
Severe(PukclReturnCodeSevere::ParamXBiggerThanY) => 0xC016,
Severe(PukclReturnCodeSevere::ParamLengthTooSmall) => 0xC017,
Severe(PukclReturnCodeSevere::DivisionByZero) => 0xC101,
Severe(PukclReturnCodeSevere::MalformedModulus) => 0xC102,
Severe(PukclReturnCodeSevere::FaultDetected) => 0xC103,
Severe(PukclReturnCodeSevere::MalformedKey) => 0xC104,
Severe(PukclReturnCodeSevere::AprioriOk) => 0xC105,
Severe(PukclReturnCodeSevere::WrongService) => 0xC106,
Warning(PukclReturnCodeWarning::PointAtInfinity) => 0x8001,
Warning(PukclReturnCodeWarning::WrongSignature) => 0x8002,
Warning(PukclReturnCodeWarning::WrongSelectnumber) => 0x8003,
Warning(PukclReturnCodeWarning::PointIsNotOnCurve) => 0x8004,
Info(PukclReturnCodeInfo::NumberIsNotPrime) => 0x4001,
Info(PukclReturnCodeInfo::NumberIsPrime) => 0x4002,
Unknown { code } => code,
})
}
}
/// An enum type that is a human readable representation of a low-level
/// [`c_abi::PukclReturnCode`] type. Useful when used together with a [`Debug`]
/// traits and formatters.
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug)]
pub enum PukclReturnCode {
Ok,
Info(PukclReturnCodeInfo),
Warning(PukclReturnCodeWarning),
Severe(PukclReturnCodeSevere),
Unknown { code: u16 },
}
/// [`PukclReturnCode`] nested enum subtype
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug)]
pub enum PukclReturnCodeInfo {
NumberIsNotPrime,
NumberIsPrime,
}
/// [`PukclReturnCode`] nested enum subtype
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug)]
pub enum PukclReturnCodeWarning {
PointAtInfinity,
WrongSignature,
WrongSelectnumber,
PointIsNotOnCurve,
}
/// [`PukclReturnCode`] nested enum subtype
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug)]
pub enum PukclReturnCodeSevere {
ComputationNotStarted,
UnknownService,
UnexploitableOptions,
HardwareIssue,
WrongHardware,
LibraryMalformed,
Error,
UnknownSubservice,
OverlapNotAllowed,
ParamNotInPukccram,
ParamNotInRam,
ParamNotInCpuram,
ParamWrongLength,
ParamBadAlignment,
ParamXBiggerThanY,
ParamLengthTooSmall,
DivisionByZero,
MalformedModulus,
FaultDetected,
MalformedKey,
AprioriOk,
WrongService,
}
fn padding_for_len(len: usize) -> usize {
const ALIGNMENT: usize = 4;
if len % ALIGNMENT != 0 {
ALIGNMENT - (len % ALIGNMENT)
} else {
0
}
}