1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//! Working with timer counter hardware
use hal::timer::{CountDown, Periodic};
use target_device::tc3::COUNT16;
#[allow(unused)]
use target_device::{PM, TC3, TC4, TC5};

use clock;
use nb;
use time::Hertz;
use void::Void;

// Note:
// TC3 + TC4 can be paired to make a 32-bit counter
// TC5 + TC6 can be paired to make a 32-bit counter

/// A generic hardware timer counter.
/// The counters are exposed in 16-bit mode only.
/// The hardware allows configuring the 8-bit mode
/// and pairing up some instances to run in 32-bit
/// mode, but that functionality is not currently
/// exposed by this hal implementation.
/// TimerCounter implements both the `Periodic` and
/// the `CountDown` embedded_hal timer traits.
/// Before a hardware timer can be used, it must first
/// have a clock configured.
pub struct TimerCounter<TC> {
    freq: Hertz,
    tc: TC,
}

/// This is a helper trait to make it easier to make most of the
/// TimerCounter impl generic.  It doesn't make too much sense to
/// to try to implement this trait outside of this module.
pub trait Count16 {
    fn count_16(&self) -> &COUNT16;
}

impl<TC> Periodic for TimerCounter<TC> {}
impl<TC> CountDown for TimerCounter<TC>
where
    TC: Count16,
{
    type Time = Hertz;

    fn start<T>(&mut self, timeout: T)
    where
        T: Into<Hertz>,
    {
        let timeout = timeout.into();
        let params = clock::ClockParams::new(self.freq, timeout);
        let divider = params.divider;
        let count = self.tc.count_16();

        // Disable the timer while we reconfigure it
        count.ctrla.modify(|_, w| w.enable().clear_bit());
        while count.status.read().syncbusy().bit_is_set() {}

        // Now that we have a clock routed to the peripheral, we
        // can ask it to perform a reset.
        count.ctrla.write(|w| w.swrst().set_bit());
        while count.status.read().syncbusy().bit_is_set() {}
        // the SVD erroneously marks swrst as write-only, so we
        // need to manually read the bit here
        while count.ctrla.read().bits() & 1 != 0 {}

        count.ctrlbset.write(|w| {
            // Count up when the direction bit is zero
            w.dir().clear_bit();
            // Periodic
            w.oneshot().clear_bit()
        });

        // How many cycles of the clock need to happen to reach our

        // effective value.
        let cycles = params.effective_freq.0 / timeout.0;
        if cycles > u16::max_value() as u32 {
            panic!(
                "cycles {} is out of range for a 16 bit counter (timeout={})",
                cycles, timeout.0
            );
        }

        // Set TOP value for mfrq mode
        count.cc[0].write(|w| unsafe { w.cc().bits(cycles as u16) });

        count.ctrla.modify(|_, w| {
            match divider {
                1 => w.prescaler().div1(),
                2 => w.prescaler().div2(),
                4 => w.prescaler().div4(),
                8 => w.prescaler().div8(),
                16 => w.prescaler().div16(),
                64 => w.prescaler().div64(),
                256 => w.prescaler().div256(),
                1024 => w.prescaler().div1024(),
                _ => unreachable!(),
            };
            // Enable Match Frequency Waveform generation
            w.wavegen().mfrq();
            w.enable().set_bit()
        });
    }

    fn wait(&mut self) -> nb::Result<(), Void> {
        let count = self.tc.count_16();
        if count.intflag.read().ovf().bit_is_set() {
            // Writing a 1 clears the flag
            count.intflag.modify(|_, w| w.ovf().set_bit());
            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }
}

impl<TC> TimerCounter<TC>
where
    TC: Count16,
{
    /// Enable the interrupt generation for this hardware timer.
    /// This method only sets the clock configuration to trigger
    /// the interrupt; it does not configure the interrupt controller
    /// or define an interrupt handler.
    pub fn enable_interrupt(&mut self) {
        self.tc.count_16().intenset.write(|w| w.ovf().set_bit());
    }

    /// Disables interrupt generation for this hardware timer.
    /// This method only sets the clock configuration to prevent
    /// triggering the interrupt; it does not configure the interrupt
    /// controller.
    pub fn disable_interrupt(&mut self) {
        self.tc.count_16().intenclr.write(|w| w.ovf().set_bit());
    }
}

macro_rules! tc {
    ($($TYPE:ident: ($TC:ident, $pm:ident, $clock:ident),)+) => {
        $(
pub type $TYPE = TimerCounter<$TC>;

impl Count16 for $TC {
    fn count_16(&self) -> &COUNT16 {
        self.count16()
    }
}

impl TimerCounter<$TC>
{
    /// Configure this timer counter instance.
    /// The clock is obtained from the `GenericClockController` instance
    /// and its frequency impacts the resolution and maximum range of
    /// the timeout values that can be passed to the `start` method.
    /// Note that some hardware timer instances share the same clock
    /// generator instance and thus will be clocked at the same rate.
    pub fn $pm(clock: &clock::$clock, tc: $TC, pm: &mut PM) -> Self {
        // this is safe because we're constrained to just the tc3 bit
        pm.apbcmask.modify(|_, w| w.$pm().set_bit());
        {
            let count = tc.count_16();

            // Disable the timer while we reconfigure it
            count.ctrla.modify(|_, w| w.enable().clear_bit());
            while count.status.read().syncbusy().bit_is_set() {}
        }
        Self {
            freq: clock.freq(),
            tc,
        }
    }
}
        )+
    }
}

tc! {
    TimerCounter3: (TC3, tc3_, Tcc2Tc3Clock),
    TimerCounter4: (TC4, tc4_, Tc4Tc5Clock),
    TimerCounter5: (TC5, tc5_, Tc4Tc5Clock),
}