1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
use hal::timer::{CountDown, Periodic};
use target_device::tc3::COUNT16;
#[allow(unused)]
use target_device::{PM, TC3, TC4, TC5};
use clock;
use nb;
use time::Hertz;
use void::Void;
pub struct TimerCounter<TC> {
freq: Hertz,
tc: TC,
}
pub trait Count16 {
fn count_16(&self) -> &COUNT16;
}
impl<TC> Periodic for TimerCounter<TC> {}
impl<TC> CountDown for TimerCounter<TC>
where
TC: Count16,
{
type Time = Hertz;
fn start<T>(&mut self, timeout: T)
where
T: Into<Hertz>,
{
let timeout = timeout.into();
let params = clock::ClockParams::new(self.freq, timeout);
let divider = params.divider;
let count = self.tc.count_16();
count.ctrla.modify(|_, w| w.enable().clear_bit());
while count.status.read().syncbusy().bit_is_set() {}
count.ctrla.write(|w| w.swrst().set_bit());
while count.status.read().syncbusy().bit_is_set() {}
while count.ctrla.read().bits() & 1 != 0 {}
count.ctrlbset.write(|w| {
w.dir().clear_bit();
w.oneshot().clear_bit()
});
let cycles = params.effective_freq.0 / timeout.0;
if cycles > u16::max_value() as u32 {
panic!(
"cycles {} is out of range for a 16 bit counter (timeout={})",
cycles, timeout.0
);
}
count.cc[0].write(|w| unsafe { w.cc().bits(cycles as u16) });
count.ctrla.modify(|_, w| {
match divider {
1 => w.prescaler().div1(),
2 => w.prescaler().div2(),
4 => w.prescaler().div4(),
8 => w.prescaler().div8(),
16 => w.prescaler().div16(),
64 => w.prescaler().div64(),
256 => w.prescaler().div256(),
1024 => w.prescaler().div1024(),
_ => unreachable!(),
};
w.wavegen().mfrq();
w.enable().set_bit()
});
}
fn wait(&mut self) -> nb::Result<(), Void> {
let count = self.tc.count_16();
if count.intflag.read().ovf().bit_is_set() {
count.intflag.modify(|_, w| w.ovf().set_bit());
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
}
impl<TC> TimerCounter<TC>
where
TC: Count16,
{
pub fn enable_interrupt(&mut self) {
self.tc.count_16().intenset.write(|w| w.ovf().set_bit());
}
pub fn disable_interrupt(&mut self) {
self.tc.count_16().intenclr.write(|w| w.ovf().set_bit());
}
}
macro_rules! tc {
($($TYPE:ident: ($TC:ident, $pm:ident, $clock:ident),)+) => {
$(
pub type $TYPE = TimerCounter<$TC>;
impl Count16 for $TC {
fn count_16(&self) -> &COUNT16 {
self.count16()
}
}
impl TimerCounter<$TC>
{
pub fn $pm(clock: &clock::$clock, tc: $TC, pm: &mut PM) -> Self {
pm.apbcmask.modify(|_, w| w.$pm().set_bit());
{
let count = tc.count_16();
count.ctrla.modify(|_, w| w.enable().clear_bit());
while count.status.read().syncbusy().bit_is_set() {}
}
Self {
freq: clock.freq(),
tc,
}
}
}
)+
}
}
tc! {
TimerCounter3: (TC3, tc3_, Tcc2Tc3Clock),
TimerCounter4: (TC4, tc4_, Tc4Tc5Clock),
TimerCounter5: (TC5, tc5_, Tc4Tc5Clock),
}